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Introduction
In recent years, artificial intelligence (AI) created by 

deep learning (DL) systems with convolutional neural net-
works (CNN) has received significant attention and can be 
applied to imaging diagnosis in the field of oral and maxil-
lofacial radiology.1-12 Although many research articles have 
reported good performance with this application, several 
problems remain to be addressed before a model suitable 
for clinical use is achieved. Large amounts of qualified data  

are required to create a high-performance learning model, 
and it is difficult to collect sufficient data from an insti-
tution, especially for relatively rare diseases. Use of the 
transfer learning method is one solution to this problem. 
In a broad sense, a CNN that has already been trained on 
various kind of images is additionally trained on a rela-
tively small range of images to create an effective model 
for specific purposes. For example, training on medical 
images of certain pathologies is additionally performed 
using a CNN pretrained on an image database openly  
available on the internet, such as ImageNet, to create an 
effective model for these pathologies. Some CNNs, such 
as VGG-1613 and GoogLeNet,14 are such pretrained CNNs. 
More specifically, with this method, a model that is cre-
ated in an institution and assigned as a source model can 
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be transferred to another institution without transferring 
the personal data of patients. Thereafter, the transferred 
pre-trained model is trained on data obtained in another  
institution and a new model is developed. This new model  
is called the “target model”. Accordingly, the exposure of  
personal information can be avoided and the target model  
can be created with relatively small amounts of data ob- 
tained in the institution to which the source model is trans-
ferred.15 Several studies have addressed the efficacy of 
this method for diagnosing certain diseases, such as maxil-
lary sinusitis16 and sialoliths,17 on panoramic radiographs.  
Although effective target models could be created in these 
studies with a relatively small number of datasets, the addi- 
tional datasets included the same diseases and conditions 
used for creating the source models. Indeed, the disease 
type distribution differs among hospitals depending on 
their characteristics. A target model should be customized 
according to the hospital’s circumstances. In some cases, 
therefore, different kinds of diseases may be used for trans-
fer learning. According to the concept and characteristics 
of the transfer learning procedure, the performance of the 
target model would be improved in diagnosing both pathol-
ogies (one used for initially creating the source model and 
one used for additional transferred learning). However, the 
efficacy of the models has not been verified for diagnosis 
via panoramic radiographs.

The aim of the present study was to clarify the influence 
of training with a different kind of lesion on the perfor-
mance of the target model. For this aim, a source model 
was created using panoramic radiographs with mandibular 
radiolucent cyst-like lesions (ameloblastoma, odontogenic 
keratocyst, dentigerous cyst, and radicular cyst) in a simi-
lar manner to that of a previous study,18 and the model was 
thereafter simulatively transferred and trained on images of 
Stafne’s bone cavity.

Materials and Methods
The study design was approved by the Ethics Committee 

of Aichi Gakuin University (approval number 496) and was 
planned according to the ethical standards of the Helsinki 
Declaration. Informed consent was obtained from all pa-
tients for inclusion in the study.

Participants
The participants were retrospectively selected from an 

image database of patients who visited our institution from 
2000 to 2021. Patients with cyst-like radiolucent lesions in 
the mandible were included. Patients with a history of pre-
vious surgery or malignant lesions were excluded. A total of 
310 patients (211 men, 99 women; average age, 47.9±16.1 
years) were selected and their panoramic images were used 
in this study (Table 1). The lesions included 38 ameloblas-
tomas, 41 odontogenic keratocysts, 82 dentigerous cysts, 
84 radicular cysts, and 65 cases of Stafne’s bone cavity.  
All lesions except the Stafne’s bone cavities had confirmed 
histopathological diagnoses. For the cases of Stafne’s bone 
cavity that did not require aggressive treatment, two radiol-
ogists with more than 10 years’ experience made the diag-
nosis based on the computed tomography appearance after 
reaching a consensus. Cases were randomly assigned to the 
training datasets (80%) and the test dataset (20%). Then, 
20% of the training data were randomly assigned as valida-
tion data.

Imaging data
The digital panoramic radiographs of all the patients 

were obtained using a Veraview Epocs system (J Morita 
Mfg Corp, Kyoto, Japan). The standard parameters were 
tube voltage 75 kV, tube current 9 mA, and acquisition time 
16 seconds.

Table 1. Summary of subjects and number of training, validation, and test datasets

　 No. of 
patients Age Training 

dataset
Validation 

dataset
Test 

dataset

Ameloblastoma 38 42.4±20.4 25 6 7
Odontogenic keratocyst 41 43.8±16.4 26 7 8
Dentigerous cyst 82 46.6±11.4 53 13 16
Radicular cyst 84 44.7±14.3 54 14 16
Stafne’s bone cavity 65 59.7±14.8 42 10 13

Total 310 47.9±16.1 200 50 60
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Selected images were downloaded from the hospital ima- 
ging database in tagged image file format (TIFF). A single 
radiologist converted them from TIFF format to portable 
network graphics format (PNG). Therefore, all images used 
in this study were uncompressed. Next, all images were 

cropped to a size of 900×900 pixels to adapt to the Detect 
Net standard used in this verification.

Labeling procedure
A labeling procedure was performed on the images. 

Labels containing the type of lesion (class name) and the 
coordinates of the lesion were created in text format. The 
class names of the lesions were determined as jaw1 for 
ameloblastomas, jaw2 for odontogenic keratocysts, jaw3 
for dentigerous cysts, jaw4 for radicular cysts, and jaw5 
for Stafne’s bone cavities. The coordinates of the upper 
left and lower right corners of the square regions of inter- 
est surrounding the lesions were recorded for each image 

(Fig. 1).

Deep learning system
The deep learning process was implemented on an 

NVIDIA GeForce GTX GPU workstation (Nvidia Corp., 
Santa Clara, CA, USA) with 11 GB of GPU and 128 GB of 
memory. We used the DetectNet network for object detec-
tion on the DIGITS training system version 5.0 (NVIDIA, 
Santa Clara, CA; https://developer.ndivia.com/digits) and 
the Caffe framework, and used the adaptive moment esti-
mation (Adam) solver, with 0.0001 as the base learning rate 

Fig. 1. A rectangular region of interest (bounding box in blue) of an 
arbitrary size is set for the lesion, and the coordinates of the upper 
left corner (x1, y1) and the lower right corner (x2, y2) are recorded. 
The labels are then created in text format.

Fig. 2. DetectNet architecture. Data layers ingest 4 or 5 training images and labels, and transformer layers perform inline data augmentation. A 
fully convolutional network (FCN) performs feature extraction and prediction of object classes and bounding boxes per grid square. Loss func-
tions simultaneously measure the error in the two tasks of predicting the object coverage (L2 loss) and object bounding box corners per grid 
square (L1 loss). Testing processes are shown in the bottom row. A clustering function produces the final set of predicted bounding boxes during 
the testing processes. The predicted bounding box is the area in which the learning model predicts the presence of a lesion. When the pre- 
sence of a radiolucent lesion is predicted, the colored bounding boxes are superimposed over the panoramic radiographs. The threshold value  
was set at 0.6.

https://developer.ndivia.com/digits
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(Fig. 2). The training processes were conducted for 1000 
epochs, and a learning model was obtained. The fully con-
volutional network (FCN) sub-network of DetectNet has 
the same structure as GoogLeNet without the data input 
layers, final pooling layer, and output layers, and we used a 
pretrained GoogLeNet model in this study.19,20

Learning model creation
Two machines (Machines A and B) with identical spec-

ifications were used to simulate transfer learning (Fig. 3).  
A source model was created from the data consisting of 
ameloblastoma, odontogenic keratocyst, dentigerous cyst, 
and radicular cyst in Machine A. Thereafter, it was transfer- 
red to Machine B and trained on additional data of Stafne’s 
bone cavity to create target models. To investigate the effect  
of the number of cases, several target models were created 
with different numbers of Stafne’s bone cavity cases. Three 
target models (T10, T21 and T42) were created by training 
the transferred source model using 10, 21 and 42 images of 
Stafne’s bone cavity. T0 denotes the source model that was 
transferred but not trained.

Learning model performance
The source model was evaluated with test data including 

the four lesions, which created the model as a benchmark,  
while the target model’s performance was assessed with test  
data including these four lesions and additional Stafne’s 
bone cavity data (Fig. 3). When the presence of a radiolu-
cent lesion was predicted by the models, the colored bound- 
ing boxes were superimposed over the panoramic images 
with different colors according to the classification of the 
lesion (Fig. 4). The predicted bounding boxes were dis-
played in red, light blue, green, purple, and yellow for jaw1 

(ameloblastoma), jaw2 (odontogenic keratocyst), jaw3 

(dentigerous cyst), jaw4 (radicular cyst), and jaw5 (Stafne’s 
bone cavity), respectively.

Intersection over Union (IoU), which is the most popular 
evaluation metric used in object detection, was calculated 
based on the predicted and ground truth areas. In this study, 
the IoU threshold for determining whether the lesions could 
be correctly detected was set at 0.6. The ground truth was  
determined by an experienced radiologist in a manner simi-
lar to the establishment of the region of interest in the label- 
ing procedure (blue square in Fig. 1).

To evaluate the performance of lesion detection, the detec- 
tion sensitivity was calculated as the ratio of the number of 
correctly predicted areas out of the areas actually including 
the lesions regardless of their classification. Furthermore, 
the classification sensitivity was calculated with respect to 

the lesions that could be correctly detected as the ratio of the  
number of correctly classified lesions divided by the num-
ber of verified lesions. The accuracy and specificity of each 
model were also calculated.

Results
Summaries of the detection and classification perfor-

mances of each model are shown in Tables 2 and 3. The T0 
target model that was not trained on the Stafne’s bone cav-
ity data could not detect this pathology as a natural result.  
When the Stafne’s bone cavity data were added to the 
training, both the detection and classification performances 
for this pathology improved. Even for lesions other than 
Stafne’s bone cavity, the detection sensitivities tended to 
increase with the increase in the number of Stafne’s bone 
cavities. Compared with the source model as a benchmark, 
the classification sensitivity of the T42 model was higher 

Fig. 3. Diagram of study design. Machine A: The process of creat-
ing a source model using four lesions (ameloblastoma, odontogenic 
keratocyst, dentigerous cyst, and radicular cyst). Machine B: The 
process of creating the target model by transfer learning a case of 
Stafne’s bone cavity to the source model. Target models (Tn) are cre-
ated by training the transferred source model using n image patches 
of Stafne’s bone cavity. T0 denotes a source model that is transferred 
but not trained.
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Table 2. Detection sensitivity of each model

Lesion Source model*
Target model**

T0 T10 T21 T42

Ameloblastoma 0.57 0.57 0.57 0.86 0.71
Odontogenic keratocyst 0.88 0.88 0.88 0.63 0.88
Dentigerous cyst 1.00 1.00 1.00 1.00 1.00
Radicular cyst 0.63 0.63 0.69 0.75 0.75
Stafne’s bone cavity - 0.00 0.69 0.69 0.92

Total 0.79 0.65 0.78 0.80 0.87

*: source model is created and tested with data not including Stafne’s bone cavity as a benchmark. **: target models (Tn) are created by training the transferred 
source model using n image patches of Stafne’s bone cavity and were tested with data including all 5 kinds of lesions. T0 denotes a source model that was 
transferred but not trained.

Fig. 4. Examples of successful classification of lesions. The predicted bounding boxes are displayed in red for ameloblastoma (A), in light blue 
for odontogenic keratocyst (B), in green for dentigerous cyst (C), in purple for radicular cyst (D), and in yellow for Stafne’s bone cavity (E). 

A

C

E

B

D
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for the lesions of ameloblastoma and odontogenic kerato-
cyst, but was equivalent or slightly lower for dentigerous 
and radicular cysts. The overall accuracy was higher for the 
T42 model than for the other models.

Discussion
The DetectNet network used in the present study was 

developed based on GoogLeNet, which is known as a pre- 
trained CNN with images of various kinds other than med-
ical images.14,19,20 The present study, however, aimed to 
assess the use of a transfer learning procedure in a more 
specific sense. We evaluated the efficacy of a method of 
transferring a source to create target models with a relative-
ly small amount of data and without disclosing patients’ 
personal data.15 Several previous reports have examined the 
usefulness of this method on panoramic radiographs. Mori 
et al.16 created effective models using transfer learning for 
the detection of maxillary sinuses and diagnosis of maxil-
lary sinusitis on panoramic radiographs. They reported that 
their detection and classification sensitivity exceeded 0.9 
with transfer learning, reaching a satisfactory diagnostic 
performance. Ishibashi et al.17 compared the performance 

of three learning models, including a model created with 
the transfer learning method, in detecting submandibular 
gland sialoliths on panoramic radiographs. They concluded  
that transfer learning with appropriate learning epochs could 
improve performance in detecting submandibular gland  
sialoliths on panoramic radiographs. Furthermore, they em-
phasized the use of the transfer learning method as an alter- 
native to sharing radiographs and patients’ personal data 
among institutions. Although effective target models could 
be created in these studies with a relatively small number of 
datasets using a transfer learning technique, the additional  
datasets included the same diseases used for creating the 
source models. 

This study used 5 types of radiolucent lesions in the man-
dible and first created a source model trained on four lesions  

(ameloblastoma, odontogenic keratocyst, dentigerous cyst, 
and radicular cyst). The source model was then transferred 
and trained with Stafne’s bone cavity cases to create a target  
model and its sensitivity was compared with the source 
model. When the source model was transferred and trained 
even with data of a different lesion (Stafne’s bone cavity), 
overall detection sensitivity tended to increase together 
with that of the other lesions. Furthermore, classification 

Table 3. Classification performances of each model

Lesion Performance 
indices Source model*

Target model**

T0 T10 T21 T42

Ameloblastoma Sensitivity 0.50 0.50 0.75 0.67 0.80
Specificity 1.00 0.97 0.91 0.95 0.96 
Accuracy 0.95 0.92 0.89 0.92 0.94 

Odontogenic keratocyst Sensitivity 0.29 0.29 0.29 0.40 0.57
Specificity 0.93 0.94 0.98 0.98 0.98 
Accuracy 0.81 0.82 0.87 0.92 0.92 

Dentigerous cyst Sensitivity 1.00 1.00 0.88 1.00 1.00
Specificity 0.90 0.87 0.94 0.94 1.00 
Accuracy 0.95 0.92 0.91 0.96 1.00 

Radicular cyst Sensitivity 0.90 0.90 0.91 0.83 0.83
Specificity 0.85 0.86 0.94 0.97 0.93 
Accuracy 0.86 0.87 0.94 0.94 0.90 

Stafne’s bone cavity Sensitivity - 0.00 1.00 1.00 0.92
Specificity - 1.00 1.00 0.97 0.98 
Accuracy - 0.95 1.00 0.98 0.96 

Overall accuracy 0.89 0.90 0.92 0.94 0.95 

*: source model is created and tested with data not including Stafne’s bone cavity as a benchmark. **: target models (Tn) are created by training the transferred 
source model using n image patches of Stafne’s bone cavity and were tested by data including all 5 kinds of lesions. T0 denotes a source model that was 
transferred but not trained.
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sensitivity also tended to increase for ameloblastoma and 
odontogenic keratocyst. These results suggest that the per- 
formance of the target model may improve with the incre- 
ase in training data, even if the data used for training were 
different. Therefore, by using the target model, in addition 
to the advantage of reducing the risk of personal informa-
tion leakage and increasing the number of cases by being 
able to use it at multiple facilities, the performance of the 
model is improved even when different lesions are used for 
training. This makes it even more useful to share models 
between institutions, and has the potential to improve model  
performance with each use.

Dentigerous cyst, radicular cyst, and Stafne’s bone cavity 
showed high classification sensitivity in all models. This 
indicated that these lesions had characteristic radiographic 
features and might be easily recognized by the AI system. 
However, the classification sensitivity of odontogenic kera- 
tocyst (0.29-0.50) was lower than that of the other lesions 
in spite of the increment of this lesion’s number, indicating 
unsatisfactory performance. Odontogenic keratocyst is a 
relatively common radiolucent lesion, and its imaging fea-
tures may frequently overlap with those of other lesions.21-25  
Indeed, ameloblastomas and dentigerous cysts are thought 
to be difficult to differentiate from odontogenic kerato-
cysts. However, classification sensitivity tended to improve 
as the number of cases used for transfer training increased. 
Therefore, we suggest that further improvement in classi-
fication sensitivity could be expected with a larger number 
of cases even including different kinds of lesions.

Using a deep learning algorithm, Lee et al.4 reported 
good performance with 99.25% accuracy for differentiat-
ing Stafne’s bone cavity from cysts and tumors of the jaw 
on panoramic radiographs. Although the main aim of the 
present study was different from theirs, our results support 
their conclusion indicating that the characteristic features 
of Stafne’s bone cavity,4,26 such as location, might contrib-
ute to the good performance.

The present study had several limitations. First, this study 
used only 1 type of neural network (DetectNet). There 
are several neural networks, such as YOLO8 and Faster 
R-CNN,27 used in object detection techniques. The results 
of the present study should be verified with comparison to 
these networks in the future. Second, all images used in the 
present study were taken with the same equipment at the 
same facility. This was a drawback; however, it allowed us 
to investigate the effects caused solely by differences in the 
types of lesions. Third, no cases of radiopaque lesions were 
included. This study used only radiolucent lesions, which 
might have yielded good results. Therefore, the impact of 

using radiopaque lesions as the material for transfer learn-
ing in the model required to be investigated. Finally, the 
number of patients was too small and there were variations 
in the number of cases. The number of cases used for train-
ing is one factor that affects the performance of the model. 
In this study, there were fewer ameloblastomas and odon-
togenic keratocysts, and the results were lower for these 
lesions than for the other cases. This might have occurred 
because of the variability in the number of cases. Given 
that there was a limited number of cases in each facility, 
future research should involve collaboration with multiple 
facilities.

In conclusion, this study investigated the influence on the 
performance of a target model trained with a different type 
of lesion. This study showed that using different lesions for 
transfer learning improves the performance of the model.
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