• Title/Summary/Keyword: Pre-swirl

Search Result 55, Processing Time 0.02 seconds

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

Design and Performance Analysis of Ring Stator for Crude Oil Carriers (원유운반선용 Ring Stator 설계 및 성능 연구)

  • Kang, Jin Gu;Byun, Tae Young;Kim, Moon Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.369-376
    • /
    • 2021
  • The International Maritime Organization has developed the Energy Efficiency Design Index, an index related to carbon dioxide emissions, to enforce regulations on newly built ships. In this study, a new type of energy-saving device called the ring stator was used for 158k crude oil carriers, whose hull form was developed as a very thin after-body hull to reduce the resistance by delaying separation. The Energy-Saving Device (ESD) particularly involving the duct, is not adapted to the thin-after body hull form-like container ship. This new ring stator was developed considering these characteristics. A parametric study was conducted through Computational Fluid Dynamics (CFD) analysis using the Star-CCM+ program, and approximately 3.4 % improvement in propulsion efficiency was achieved. Further optimization investigations and experimental studies should be conducted in the future.

THE EFFECT OF FLUORIDE PRETREATMENT ON SHEAR BOND STRENGTH BETWEEN ENAMEL AND FISSURE SEALANT (불소 전처리가 법랑질과 치면열구전색재의 전단결합강도에 미치는 영향)

  • Ryu, Phil-Jun;Jang, Ki-Taek;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.522-529
    • /
    • 2001
  • This study seeks to know the effect of fluoride topical application on the shear bond strength between enamel and fissure sealant. On group 1,2,3,4, Teethmate A(unfilled sealant) and on group 5,6,7,8 Ultraseal XT(filled sealant) were used. Group 1 and 5 were not pre-treated with fluoride and group 2 and 6 were pre-treated with 1.23% APF for 4minutes. Group 3 and 7 were pretreated with 2.0% NaF for 4 minutes. and group 4 and 8 were pumiced with abrasive containing fluoride for 10 seconds. Prepared specimens were acid etched for 30 seconds using 35% phosphoric acid, and then sealant was cured to the specimen using a 3mm diameter by 2mm height mold. They went through thermocycling. Its shear bond strength was measured, and then acid etched both groups that were pretreated with fluoride and that were not pretreated with fluoride. Then we examined the surface of the specimen with EM and came up with these results. In groups using unfilled sealant(group 1,2,3.4) there were no significant differences between oops pretreated with fluoride and groups not pretreated with fluoride. In groups using filled sealant(group 5,6,7,8), groups 6 and 7(treated with 1.23% APF 2.0% NaF respectively) showed significantly lower shear bond strength, compared to group 5 (not pretreated with fluoride) and group 8 (pumiced with abrasive containing fluoride) (p<0.05).

  • PDF

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.