• Title/Summary/Keyword: Pre-strain

Search Result 415, Processing Time 0.03 seconds

Experimental investigation on bolted rock mass under static-dynamic coupled loading

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Shi, Xinshuai;Hu, Shanchao
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • Instability of bolted rock mass has been a major hazard in the underground coal mining industry for decades. Developing effective support guidelines requires understanding of complex bolted rock mass failure mechanisms. In this study, the dynamic failure behavior, mechanical behavior, and energy evolution of a laboratory-scale bolted specimens is studied by conducting laboratory static-dynamic coupled loading tests. The results showed that: (1) Under static-dynamic coupled loading, the stress-strain curve of the bolted rock mass has a significant impact velocity (strain rate) correlation, and the stress-strain curve shows rebound characteristics after the peak; (2) There is a critical strain rate in a rock mass under static-dynamic coupled loading, and it decreases exponentially with increasing pre-static load level. Bolting can significantly improve the critical strain rate of a rock mass; (3) Compared with a no-bolt rock mass, the dissipation energy ratio of the bolted rock mass decreases exponentially with increasing pre-static load level, the ultimate dynamic impact energy and dissipation energy of the bolted rock mass increase significantly, and the increasing index of the ratio of dissipation energy increases linearly with the pre-static load; (4) Based on laboratory testing and on-site microseismic and stress monitoring, a design method is proposed for a roadway bolt support against dynamic load disturbance, which provides guidance for the design of deep underground roadway anchorage supports. The research results provide new ideas for explaining the failure behavior of anchorage supports and adopting reasonable design and construction practices.

Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes

  • Li, Rui;Sun, L.Z.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.239-245
    • /
    • 2011
  • The dynamic mechanical behavior of silicone rubber reinforced with multi-walled carbon nanotubes (MWCNTs) has been investigated in this study. The MWCNT-reinforced nanocomposites are tested in compression mode through dynamic mechanical analysis (DMA). Multiple effects including MWCNT loading, testing frequency, dynamic strain amplitude, and pre-strain level are taken into consideration. Results show that, by adding 5 wt% of MWCNTs, the dynamic stiffness and damping coefficient of the silicone rubber are significantly enhanced. It is further observed that the dynamic mechanical properties of the nanocomposites are sensitive to dynamic strain amplitude but only slightly affected by pre-strains.

Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy (TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발)

  • 이동화;박영철;박동성;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

Pulse-Pre Pump Brillouin Optical Time Domain Analysis-based method monitoring structural multi-direction strain

  • Su, Huaizhi;Yang, Meng;Wen, Zhiping
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • The Pulse-Pre Pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) technique is introduced to implement the multi-direction strain measurement. The monitoring principle is stated. The layout scheme of optical fibers is proposed. The temperature compensation formula and its realizing method are given. The experiments, under tensile load, combined bending and tensile load, are implemented to validate the feasibility of the proposed method. It is shown that the PPP-BOTDA technique can be used to discriminate the multi-direction strains with high spatial resolution and precision.

Development of a Mechanical Crack Model to Analyze Deformation and Failure Mechanism of Rock (암석의 변형 및 파괴거동의 해석을 위한 균열모형 개발에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.96-106
    • /
    • 1998
  • Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.

  • PDF

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Study on Application of Forming Limit Criteria for Formability on Hydroforming Parts (하이드로포밍 부품의 성형성 평가기준 적용 연구)

  • Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.833-838
    • /
    • 2007
  • In tube hydroforming process, several defective products could be obtained such as bursting, wrinkling, folding, buckling. Because, especially, bursting is most frequently occurred failure among the well known failures, it is mostly important to predict the onset of bursting failure on tube hydroforming process. For most sheet metal forming processes, strain based forming limit diagram(FLD) is used often as a criteria to estimate the possibility of onset of the failures proposed above. However, FLD has a shortcoming that it is dependent on strain path while stress based diagram is independent on strain history. Generally, tube hydroforming consists of three main processes such as pre-bending, pre-forming, and hydroforming and it means that the strain histories of final products are nonlinear. Therefore, forming limit stress diagram(FLSD) is more suitable to predict forming limit for hydroforming parts. In this study, FLSD is applied to estimate bursting failure for an engine cradle of an automobile part. Consequently, it is proved that application of FLSD to predict forming limit is available for tube hydroforming parts.

Unconfined Compressive Stress-Strain Behavior of Cemented Granular Geomaterials (강화된 입상지반재료의 일축압축 응력-변형거동)

  • Park, Seong-Wan;Cho, Chung Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.183-190
    • /
    • 2009
  • It is necessary to predict the deformation and stresses on soils to establish the nonlinear stress-strain relationship of geomaterials at various strain levels. Especially, a need exists to establish the pre-failure nonlinear characteristic of cemented granular geomaterials used in road constructions. In this paper, therefore, conventional granular soils were mixed with various cementing materials, such as cement and fly ash from coal combustion by-products. Then, the normalized nonlinear behavior of cemented geomaterials was assessed using unconfined compression test. In addition, various constitutive models of soils were evaluated for estimating pre-failure non-linear behavior of cemented geomaterials from the test results.

A Study on the strain hardening of tube hydroforming according to process (튜브 액압성형품의 공정단계별 가공 경화 특성 연구)

  • Park, H.K.;Yim, H.S.;Yi, H.K.;Jeon, D.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF