• Title/Summary/Keyword: Pre-drying

Search Result 152, Processing Time 0.029 seconds

Attachment of Silver Nanoparticles to the Wool Fiber Using Glycidyltrimethylammonium Chloride(GTAC) (Glycidyltrimethylammonium Chloride(GTAC)를 이용한 양모 섬유 표면의 Silver Nanoparticle 부착)

  • Lee, Seungyoung;Sul, In Hwan;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.70-76
    • /
    • 2016
  • Silver nanoparticles(AgNPs) were attached to wool fibers using glycidyltrimethylammonium chloride(GTAC), which is a type of quaternary ammonium salt. GTAC, which contains an epoxy functional group that, under high temperatures, generates a ring-opening reaction with wool fibers, which contain the amine group. Then, the AgNPs are attached to the surface of the GTAC-treated wool fibers by treatment with a silver colloidal solution. The process involves the following procedures: (1) The wool fibers are immersed in the GTAC solution, followed by pre-drying at $80^{\circ}C$ and curing at $180^{\circ}C$ to induce an alteration in the chemical structure; and (2) The wool fibers treated with GTAC are immersed in the silver colloid at $40^{\circ}C$ for 120 min to chemically induce a strong attachment of the AgNPs to the wool fibers. Scanning electron microscopy was used to analyze the influence of the concentrations of GTAC and the silver colloid, as well as the influence of the applied temperature of the silver colloid on the wool fibers, and the influence of the morphological changes in the wool fiber surfaces. As a result, the enhanced concentrations of GTAC and the silver colloid together with an elevated applied temperature of silver colloid have a tendency to increase in Ag atomic%.

Synthesis of Manganese Hydrogen Phosphate Hydrate by Controlled Double-jet Precipitation (더블제트 침전법에 의한 제이인산망간염 수화물의 새로운 합성 방법)

  • Kim, Won-Seok;Kang, Yong;Kim, Yeong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Manganese hydrogen phosphate hydrate, $MnHPO_4{\cdot}2.25H_2O$, is a major constituent of the pre-conditioning compositions for the manganese phosphate coating treatment over carbon steel substrate. This compound is conventionally produced by the synthesis in the aqueous solution process followed by the filtration and drying processes and a series of size reduction and classification processes in dry state. However, it is evident that the conventional process is neither environment-friendly nor cost-effective. In this work, a new process principle was examined based on the controlled double-jet precipitation technology to produce the manganese chemical product of fairly uniform particle size distribution in an aqueous solution media. The effects of stabilizing agents were comparatively studied by the scanning electron microscope analysis in a uniformity point of view of the resulting particle size. Polyvinylpyrrolidone and Gum Arabic were excellent in controlling the crystal growth step, resulting in fairly uniform size distributions of the particles from the controlled double-jet process.

A Study on Development of Casual Hanbok Design made of Hanji Yarn Textiles for the New Silver Generation Woman (뉴실버세대 여성을 위한 한지직물 활용 생활한복 디자인 개발 연구 - 대전 지역을 중심으로 -)

  • Han, Nam-Ki;Park, Eun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.702-712
    • /
    • 2008
  • The aim of this study is to develop Casual Hanbok design made of Hanji yarn textiles for New Silver generation women. The New silver generation is a coined word which has meaning of a newly silver generation and it is distinguished from pre-silver generation. New silver generation is a generation that is independent and given active role by their age groups and generational characteristic. The concept of silver generation was introduced from maturity market in Japan. This study was based on analysis about their preference of forms, colors, and materials of Casual Hanbok. The survey target were 270 female over age 50 living in Daejeon City. The analysis methods used frequency and percentage. The results were summarized as following. Although almost of them haven't worn Casual Hanbok, they had the positive recognition on wearing one. They preferred longer length jacket to traditional Korean style, shorter length of skirt. They also preferred the traditional sleeve shape and knotted buttons. On the foundation of this fact, 2 styles consist of 5 Casual Hanbok design items made of functional material - Hanji yarn textiles that have antimicrobial, deodorant, quick drying, far infrared radiation which are not harmful to health - for New silver women were suggested. One style was 3 items - blouse, vest, skirt - which are the sense of Korean tradition with activity by patch. The other was 2 items - jacket and skirt - which are the sense of Korean tradition with modern way by quilting. Lastly, these garments were evaluated by 13 experts, they were satisfied with 2 styles and all items. As this study were based on the Elderly women living in Daejeon city, it had the limitation on applying of preference styles to all the New silver generation.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

Continuous PTFE Coating Process on Basalt Sewing Thread (현무암 재봉사의 연속식 테프론 코팅 공정)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • On the basis of our previous research results concerning a batch Teflon coating process on the surface of basalt fiber which has superior fire-resistance and chemical resistance, we have tried to set up suitable operating conditions for continuous polytetrafluoroethylene(PTFE) coating process. The basalt fiber was continuously pre-treated with 7.5 wt%(6.5% of DPU) of triethoxytrifluoropropylsilane(TMTFPS) and then coated with 20 wt% of PTFE dispersions containing 0.25 wt% of penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to get the highest tensile and loop strengths. After dipping process, the PTFE coated basalt fiber was dried under 2 m drying chamber at $120^{\circ}C$ with 12 m/min of winding speed and consequently sintered under 2 m sintering chamber at $380^{\circ}C$ for 40 s. Conclusively, PTFE coated basalt fiber whose tensile and loop strengths were to $3.4g_f/D$ and $2.3g_f/D$, respectively, applicable to high temperature sewing thread could be continuously prepared with our pilot scale process under optimum conditions.

Interaction of Fibroblast Cells onto Chloric Acid-treated Poly($\alpha$-hydroxy acid) Polymer Surfaces (염소산 처리된 Poly($\alpha$-hydroxy acid)계 고분자 표면과 섬유아세포의 상호작용)

  • 이상진;강길선;이진호;이영무;이해방
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.877-885
    • /
    • 2000
  • PLA, PGA and PLGA films were treated with chloric acid mixture solution [70% perchloric acid (HClO$_4$)/potassium chlorate (KClO$_3$) aq. saturated solution, 3 : 2] to increase surface wettability and thus cell compatibility. The surface-treated PLA, PGA, and PLGA films were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy. Surface wettability of chloric acid-treated PLA, PGA, and PLGA film surfaces was gradually increased with increase of treatment time. Unlike EtOH pre-treatment, chloric acid-treated polymer films maintain hydrophilic surface after drying. In cell adhesion test, fibroblasts were cultured on the chloric acid-treated film surfaces for 1 and 2 days. As the surface wettability increased, the cell adhesion on the surface were increased. In conclusion, this study demonstrated that the surface wettability of polymer plays an important role for cell adhesion and proliferation behavior.

  • PDF

The Dyeing Properties and Functionality of Water Lily(Nymphaea tetragona) Leaves Extract as a New Natural Dye Resource(2): Dyeing of Silk and Wool Fibers (새로운 천연염료로서 수련 잎 추출색소의 염색성과 기능성(2): 견·모섬유를 중심으로)

  • Yeo, Youngmi;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.171-179
    • /
    • 2017
  • This study was to investigate the practicality and functionality of water lily(Nymphaea tetragona) leaves as a natural dye resource while searching for various dyeing methods to utilize them. Effect of dyeing condition including methanol ratio of dyebath, dyeing temperature and time, mordanting method, etc were investigated. Colorants were prepared by extraction in methanol and followed drying process. When composing 30% of methanol in the dyebath, better dyeuptake and uniform dyeing were resulted. Pre-mordanting method gave better results in terms of dye uptake than post-mordanting method on the wool fabrics. Fe and Ti were effective for increasing the dye uptake on the silk fabrics. Depending on mordant type and mordanting method, the dyed fabrics got various color showing green, khaki, brownish yellow, dark brown, dark gray and so on. As for color fastness, the silk fabrics dyed with water lily extract showed relatively high rating in light fastness(3~4, 4~5 rating), washing fastness(4~5, 5 rating), and rubbing fastness(4, 4~5 rating). The silk and wool fabrics dyed with water lily leaves extract showed excellent antimicrobial activity over 98% of bacterial reduction rate against Staphylococcus aureus and Klebsiella pneumoniae. It was confirmed that water lily leaves can be used as a natural dye resource for dyeing wool and silk fabrics because its colorants showed excellent affinity and antimicrobial functionality as well as good colorfastness.

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Effect of Processing Parameters on the Densification-Behaviors by Low Shrinkage in Clay Materials (점토질소지의 공정제어에 따른 저수축 치밀화효과)

  • 임희진;최성철;이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.725-734
    • /
    • 1996
  • Shrinkage behaviors associated with forming drying and firing processes could be a driving force for the densification in materials. Low shrinkage-densification behaviors in clay materials have been shown to be highly dependent upon the processing parameters including particle size effect and kinetic behaviors caused by phases transformation characteristics. Chamottes pre-treated at 90$0^{\circ}C$ and 120$0^{\circ}C$ had dominent influence upon shrinkage control of materials during heat-treatment. But Coarse chamotte particles heat-treated at 120$0^{\circ}C$ did not contri-bute to any densification behaviors in clay materials while these added coarse particles could enhance near-net-shape control. Microstructure / property relationships in clay materials have been thought to be directly influenced by optimized characteristics between low shrinkage and densification behaviors.

  • PDF

Combustion Characteristics and Design of Fiber Mat Catalytic Burners (매트 형태 연소촉매를 사용하는 촉매버너의 구조와 연소특성)

  • Song, Kwang-Sup;Jung, Nam-Jo;Kim, Hee-Yeon
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Flameless fiber mat catalytic burners have been known as an effective heat source in industrial drying processes since heat obtained from combustion can be transferred to absorptive body by far-infrared radiation. In order to extend the application of fiber mat catalytic burner, novel fiber mat catalytic burners were manufactured and combustion characteristics of them were investigated. For diffusive catalytic burners, the efficiency of combustion was significantly affected by the installation direction and the temperature of catalytic bed perimeter influenced on the diffusion rate of oxygen which determined the combustion efficiency of catalytic burner. It was seen in premixed catalytic combustion that air content in premixed fuel gas was optimized at slightly higher than theoretical amount of air. Combustion heat released higher than 70% by radiant heat in premixed catalytic combustion likewise diffusive catalytic combustion.