DOI QR코드

DOI QR Code

Continuous PTFE Coating Process on Basalt Sewing Thread

현무암 재봉사의 연속식 테프론 코팅 공정

  • Lee, Soo (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 공과대학 화공시스템공학과)
  • Received : 2014.03.11
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

On the basis of our previous research results concerning a batch Teflon coating process on the surface of basalt fiber which has superior fire-resistance and chemical resistance, we have tried to set up suitable operating conditions for continuous polytetrafluoroethylene(PTFE) coating process. The basalt fiber was continuously pre-treated with 7.5 wt%(6.5% of DPU) of triethoxytrifluoropropylsilane(TMTFPS) and then coated with 20 wt% of PTFE dispersions containing 0.25 wt% of penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to get the highest tensile and loop strengths. After dipping process, the PTFE coated basalt fiber was dried under 2 m drying chamber at $120^{\circ}C$ with 12 m/min of winding speed and consequently sintered under 2 m sintering chamber at $380^{\circ}C$ for 40 s. Conclusively, PTFE coated basalt fiber whose tensile and loop strengths were to $3.4g_f/D$ and $2.3g_f/D$, respectively, applicable to high temperature sewing thread could be continuously prepared with our pilot scale process under optimum conditions.

내화성 및 내화학성이 우수한 현무암사의 표면에 회분식 방법에 의한 테프론 코팅 연구의 결과를 토대로 연속식 코팅 공정 인자를 도출하기 위한 연구를 수행하였다. 현무암사를 7,5 wt% 트리에톡시트리플루오로실란(TMTFPS)으로 연속적으로 전처리 한 후, 침투제로 0.25 wt% bis(2-ethylhexyl)sulfo succinate (DOS-Na)가 함유된 20 wt% 테프론 수분산액으로 딥 코팅한 후 2 m의 $120^{\circ}C$ 건조 챔버에서 12 m/mim의 속도로 건조한 후 2 m의 $380^{\circ}C$ 소성 챔버에서 40초간 소성하여 최종 $3.4g_f/D$의 인장 강도와 $2.3g_f/D$의 루프강도를 가지는 테프론이 코팅된 고내열 재봉사용 현무암사를 제조하였다.

Keywords

References

  1. Toyobo, WO 2004/003272 (2004).
  2. www.koinsco.com/page4-1.htm
  3. P. M. Sawko, and A. Vasudev, Development of a Silicon Carbide Sewing Thread, SAMPE Quarterly, 20(4), 38 (1989).
  4. P. M. Sawko, U. S. Patent 5,436,075 (1995).
  5. P. M. Sawko, Effect of Processing Treatments on Strength of Silica Thread for Quilted Ceramic Insulation on Space Shuttle, SAMPE Quarterly, 16(5), 17-21 (1985).
  6. P. M. Sawko and H. K. Tran, Influence of Thread Construction on Strength of Ceramic Sewing Threads, SAMPE Quarterly, 18(4), 32-39 (1987).
  7. P. M. Sawko, "Tailorable Advanced Blanket Insulation", from Fiber-Tex 1987, NASA Conference Publication 3001 (1988).
  8. A. S. Fareet, Thermomechanical Properties of SiC Yarn, Ceramic Bulletine, 66(2), 353-358 (1987).
  9. Sumitomo Chemical Co, U. S. Patent 6,409,961 (2002).
  10. V. V. Gur'ev, E. I. Neproshin, and G. E. Mostovoi, The effect of basalt fiber production technology on mechanical properties of fiber, Glass and Ceramics, 58(1-2), (2001).
  11. J. S. Kim, J. H. Lim, and Y. Huh, Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics, Fibers and Polymers, 14(7), 1148-1156 (2013). https://doi.org/10.1007/s12221-013-1148-6
  12. A. G. Novitskii1, and M. V. Efremov, Technological aspects of the suitability of rocks from different deposits for the production of continuous basalt fiber, Glass and Ceramics, 69(11-12), 409-412 (2013). https://doi.org/10.1007/s10717-013-9491-z
  13. A. G. Novitskii, High-temperature heat insulating materials based on fibers from basalt-type rock materials, Refractories and Industrial Ceramics, 45(2), 144-146 (2004). https://doi.org/10.1023/B:REFR.0000029624.43008.ef
  14. www.speautomotive.com
  15. N. Morova, Investigation of usability of basalt fibers in hot mix asphalt concrete, Construction and Building Materials, 47, 175-180 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.048
  16. D. O. Kolomytkin, M. O. Gallyamov, and A. R. Khokhlov, Hydrophobic Properties of Carbon Fabric with Teflon AF 2400 Fluoropolymer Coating Deposited from Solutions in Supercritical Carbon Dioxide, Russian Journal of Physical Chemistry B, 5(7), 1106-1115 (2011). https://doi.org/10.1134/S1990793111070049
  17. V. S. Houk, R. B. Zweidinger, and L. D. Claxton, Mutagenicity of Teflon-coated glass fiber filters: a potential problem and solutions, Environ. Sci. Technol., 21(9), 917-920 (1987). https://doi.org/10.1021/es00163a011
  18. K. Nishida, H. Sakaguchi, P. Xie, Y. Terasawa, M. Ozawa, M. Kamei, and K. Nishida, Biocompatibility and durability of Teflon-coated platinum-iridium wires implanted in the vitreous cavity, J, Artif, Organs., 14, 357-363 (2011). https://doi.org/10.1007/s10047-011-0591-7
  19. S. Lee, J. H. Kim, and B. S. Yoon, Silane Coupling Agents to Improve the Loop Strength of PTFE Coated Inorganic Fiber, 2013 Joint Japan/Taiwan/Korea Chem. Eng. Conf. Nov. 8-10, Kumamoto, Japan, (2013).
  20. S. Lee, and E. Seong, The Effect of Penetrating Agent and Fluorosilane on High Temperature Teflon Coating, J. Kor. Oil Chemists' Soc., 30(4), 672-678 (2013). https://doi.org/10.12925/jkocs.2013.30.4.672