• Title/Summary/Keyword: Pre-denitrification

Search Result 27, Processing Time 0.027 seconds

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

Small Sewage Treatment Using Septic Tank and Sand Trench (부패조와 모래트렌치를 이용한 소규모 오수 처리)

  • 박영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • This study was carried out to treat sewage using sand trench combined with septic tank process in rural areas. In order to find optimum parameters, design and operation mode was changed from Run 1 to Run 4. In order to facilitate nitrification and T-P removal, diffuser and iron plate was installed in the 3rd trench of Run 2 period. The septic tank played a role as pre-application process of sand trench system. The removal efficiencies of COD, NH$_4$-N, T-P at steady state were 94.6%, 87.9% and 54.5%, respectively. Addition of diffuser and iron plate in the 3rd trench has increased the removal efficiencies of the NIL-N and T-P. In this system, denitrification were not occurred because of the high DO.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

Evaluation of Diagnosis-based Control Strategy for NH4-N and NOX-N Removal of a Full-scale Wastewater Treatment Process (하수처리시설의 질산화 진단기반 제어 방법의 개발 및 실규모 플랜트 적용을 통한 평가)

  • Kim, Yejin;Kim, Hyosoo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.447-456
    • /
    • 2018
  • In this research, the target process was a modified type of a conventional aeration tank with four different influent feeding points and alternated aeration to obtain nitrogen removal. For more accurate switching of influent feeding, the process was operated under a designed control strategy based on monitoring of $NH_4-N$ and $NO_X-N$ concentrations in the tank. However, the strategy did have some limitations. For example, it was not sensitive to detecting the end of each reaction when losing the balance between nitrification and denitrification of each opposite part of biological tank. To overcome the limitations of the existing control strategy, a diagnosis-based control strategy was suggested in this research using the diagnosis results classified as normal (N), ammonia accumulation (AA) and nitrate accumulation (NA). Using the pre-designed rules for control actions, the aeration and volume of the aerated part of the reactor could be increased or decreased at a fixed mode time. In simulations of the suggested diagnosis-based control strategy, the $NH_4-N$ and $NO_X-N$ removal rates in the reactor were maintained at higher levels than those of the existing control strategy.

THE MEMBRANE BIOFILM REACTOR IS A VERSA TILE PLATFORM FOR WATER AND WASTEWATER TREATMENT

  • Rittmann, Bruce E.
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.157-175
    • /
    • 2007
  • The membrane biofilm reactor (MBfR) creates a natural partnership of a membrane and biofilm, because a gas-transfer membrane delivers a gaseous substrate to the biofilm that grows on the membrane's outer wall. $O_2$-based MBfRs (called membrane aerated biofilm reactors, or MABRs) have existed for much longer than $H_2$-based MBfRs, but the $O_2$-based MBfR is a versatile platform for reducing oxidized contaminants in many water-treatment settings: drinking water, ground water, wastewater, and agricultural drainage. Extensive bench-scale experimentation has proven that the $H_2$-based MBfR can reduce many oxidized contaminant to harmless or easily removed forms: e.g., ${NO_3}^-$ to $N_2$, ${ClO_4}^-$ to $H_2O$ and $Cl^-$, ${SeO_4}^{2-}$ to $Se^0$, and trichloroethene (TCE) to ethene and $Cl^-$. The MBfR has been tested at the pilot scale for ${NO_3}^-$ and ${ClO_4}^-$ and is now entering field-testing for many of the oxidized contaminants alone or in mixtures. For the MBfR to attain its full promise, several issues must be addressed by bench and field research: understanding interactions with mixtures of oxidized contaminants, treating waters with a high TDS concentration, developing modules that can be used in situ to augment pre-denitrification of wastewater, and keeping the capital costs low.

Nitrogen Removal in Livestock Wastewater Using Sequencing Batch Reactor (SBR을 이용한 축산폐수의 질소 제거)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Sang-Hyung;Lim, Jae-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.61-67
    • /
    • 2003
  • A new precess which consists of pre-dewatering device, post composting for solid phase and post sequencing batch reactor(SBR) for liquid phase was designed. Nitrogen in supernatants of dewatering device was removed by sequencing batch reactor. Experiments were carried out to investigate the SBR operation modes such as fill ratio, SRT, and operation cycle. The optimum fill ratio, SRT and aeration/non-aeration time were 1/12, 15days, and 2hr aeration / 1hr non aeraion, respectively. Methanol as an external carbon source increased denitrification when step feeding method was applied, not single feeding method.

  • PDF

A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities (하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구)

  • Park, Chanhyuk;Hong, Seok-Won;Lee, Sanghyup;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

An Optimized Analysis of the Optimal Flow Uniformity in SCR Facility for Small-and Mid-Sized CHPs (중소형 열병합 발전용 SCR 장치의 유동 균일화를 위한 전산유체해석 최적화 연구)

  • Lee, Sang-Hwan;Shin, Sang-Woo;Kim, Jung-Sub
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.48-52
    • /
    • 2013
  • In this study, the internal flow field of SCR Denitrification Plant was simulated by using Computational Fluid Dynamics(CFD). In order to analyze the uniformity of flow field, an interpretation on the pre-existing facilities was performed, and some moot points were identified and compensated through this analysis. The compensatory methods include the installation of the Porous Plate below the bottom of the Baffle to create uniform flow and also, and the Guide Vane was also placed in the bend of pipe to guide the flow uniformly. Lastly, the Baffle was installed to deduct equalized space distribution of the air flow, initially flowed into the SCR Plant.

  • PDF

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF