• Title/Summary/Keyword: Pre-cracks

Search Result 178, Processing Time 0.03 seconds

Study on the Fractures Types of PHC Pile by Impact Load of Follower (보조말뚝의 충격하중에 의한 PHC말뚝의 파손유형 고찰)

  • Seo, Dong-Nam;Choi, Sang-Ho;Kim, Jin-Sik;Kim, Min-Kab;Lee, Dong-Hyeon;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.144-145
    • /
    • 2021
  • This study analyzed the cases of cracks in piles due to the use of followers under construction conditions where water exists inside the piles, and confirmed whether the piles were cracked through a field test simulating the construction conditions in which water pressure inside the piles was generated by a hammer. According to the construction case, under the construction condition where the pile length is 20% to 30% shorter than the drilled length, about 80% cracks occur, so there is a high possibility of cracking due to water inside the pile. A field test was conducted to confirm the type of pile failure due to hammer under the construction condition in which water exists inside the pile. The pile head was not destroyed by the compressive load, and one or more longitudinal cracks occurred along the PC steel wire. The closed end pile generates water pressure by hammer. the follower and cushion(compression plywood) must be drilled at least 0.4D. It is expected that improved quality control will be possible as the water pressure inside the pile is reduced.

  • PDF

A Study on the Hydriding Reaction of Pre-oxidized Zr Alloys (산화막을 입힌 지르코늄 합금의 수소화 반응에 관한 연구)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This paper presents some experimental results on incubation time for massive hydriding of Zr alloys with oxide thickness. Oxide effects experiments on massive hydriding reaction of commercial Zr alloy claddings and pre-oxidized Zr alloys with hydrogen gas were carried out in the temperature range from 300 to $400^{\circ}C$ with thermo-gravimetric apparatus. Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness and that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and the hydriding rate are similar to that of oxide-free Zr alloys once massive hydriding is initiated. There was a difference in micro-structures between oxide during incubation time and oxide after incubation time. Physical defects such as micro-cracks and pores were observed in only oxide after incubation time. Therefore, the massive hydriding of Zr alloys seems to be ascribed to short circuit path, mechacical or physical defects, such as micro-cracks and pores in the oxide rather than hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypostoichiometric oxide.

Crack Propagation and Coalescence in Yeosan Marble under Uniaxial Compression (단축압축 하에서 대리석의 균열전파 및 결합)

  • 박남수;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.217-224
    • /
    • 2001
  • Rock masses are usually discontinuous in nature due to various geological processes and contain rock joints and bridges. Crack propagation and coalescence processes in rock bridge mainly cause rock failures in slopes, foundations, and tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. Specimens of 120${\times}$60${\times}$25 mm in size, which were made of Yeoman Marble, were prepared. In the specimens, two artificial cracks were cut with pre-existing crack angle ${\alpha}$, bridge angle ${\beta}$, pre-existing crack length 2c and bridge length 2b. Wing crack initiation stress, wing crack propagation angle, and crack coalescence stress were measured and crack initiation, propagation and coalescence processes were observed during uniaxial compression. Crack coalescence types were classified and analytical study using Ashby and Hallam model (1986) was performed to be compared with the experimental results.

  • PDF

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.

Corrosion Failure Analysis of Condensate Pre-Heater in Heat Recovery Steam Generator (배열회수보일러 복수예열기 부식 파손 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Kim, Kyung Min;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • In this work, we have performed a corrosion failure analysis of a leaking tube connected to an upper header of a condensate pre-heater in a heat recovery steam generator. It was revealed that the leakage position in the tube was the location where the materials were easily vulnerable due to tensile residual stresses induced by the material manufacturing process and welding process. In addition to an imbalance in the module induced by temperature difference during operation of the pre-heater, the weight of the modules and thermal fatigue provoked a type of stress of tensile-tensile fatigue on the tube. Thus, the leakage position of the pre-heater was exposed to the tensile stress on the inner surface of the tube facing the gas, which rendered the unstable oxide layer susceptible to corrosion and the formation of pits on the water side. The cracks propagated along with the degraded microstructure in a transgranular cracking mode under fatigue loading and finally resulted in water leakage.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Boundary element analysis of stress intensity factors for Z-shaped cracks (Z형상 균열의 응력세기계수에 대한 경계요소 해석)

  • 이강용;원동성;최형집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1987
  • Stress intensity factors are computed by the boundary element method employing the multiregion technique along with the double-point concept. To demonstrate the validity of the current method, the stress intensity factors of the well-known simple models such as a slanted edge crack and an arcular crack are determined, in advanced, which are proved to be in good agreement within 5% with the pre-existing solutions. Z-shaped cracks are analyzed with various branch crack lengths and branching angles.

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

Small Unmanned Aerial System (SUAS) for Automating Concrete Crack Monitoring: Initial Development

  • Kang, Julian;Lho, B.C.;Kim, J.W.;Nam, S.H.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.310-312
    • /
    • 2015
  • Small Unmanned Aerial Systems (SUAS) have been gaining a special attention in the U.S. recently because it is capable of getting aerial footages conveniently and cost effectively, but also because of its potential threat to the safety of our society. Regarding the benefits, one can easily find successful cases. For example, remote controlled or pre-programmed unmanned aircraft help ranch owners monitor their livestocks or crop harvesting status cost-effectively without having to hire human pilots. The professionals in the construction industry also acknowledge the benefits they could gain from using SUAS. Some firms already use a small unmanned aircraft for monitoring their construction activities, which may help project managers figure out construction progress, resolve disputes in real time, and make proactive decisions for quality control. However, there are many technical challenges that my hinder the use of small unmanned aircraft in the construction industry. This paper explores opportunities and challenges in using unmanned aircraft to monitor concrete cracks on the surface of containment building in the nuclear power plant.

  • PDF

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.