• 제목/요약/키워드: Pre-cracked method

검색결과 18건 처리시간 0.02초

재하상태를 고려한 RC 보의 에폭시 주입 보수공법의 적용성 평가 (Applicability of Epoxy Injection Method In Cracked RC Beams Considering Pre-Loading Conditions)

  • 홍건호;신영수
    • 콘크리트학회논문집
    • /
    • 제16권1호
    • /
    • pp.88-93
    • /
    • 2004
  • 철근콘크리트 구조 부재에 발생되는 균열은 구조체의 미관, 내구성 및 구조적 측면에서 보수를 요하게 되며, 에폭시 주입 균열보수공법은 최근 국내에서 가장 널리 사용되는 균열 보수공법 중의 하나이다. 에폭시 주입공법의 성능은 사용되는 에폭시의 물성과 균열의 폭에 기인하게 된다. 본 연구에서는 균열을 발생시키는 하중의 크기를 변수로 하고, 재하 중 보수한 경우와 하중을 제거한 후 보수한 경우를 비교 분석하도록 하였다. 총 5개의 실험체에 대하여 공칭 휨강도의 $70\%$$90\%$의 하중을 가력하여 균열을 발생시킨 후 에폭시 주입공법으로 보수하고, 보수 이후 부재의 거동을 실험적으로 연구하였다. 실험결과, 에폭시 주입공법에 의한 균열의 보수는 양호한 구조성능의 회복을 나타내었으며, 극심한 하중 하에서 보수된 실험체는 에폭시의 강도특성으로 인하여 오히려 강도 및 강성이 증가되는 현상을 나타내었다.

사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과 (Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

선균열공법을 활용한 고강도 암반구간 로드헤더 굴진효율 향상방안 연구 (The Improvement of Excavation Efficiency of Roadheader by Using Pre-Cracked Method in High Strength Rock)

  • 김형렬;정상준;강준호
    • 터널과지하공간
    • /
    • 제33권3호
    • /
    • pp.141-149
    • /
    • 2023
  • 근래 들어 도심지 지하공간에 대한 수요가 증가함에 따라 도심지 터널계획이 활발히 진행되고 있다. 특히 로드헤더 굴착공법은 도심지 터널에 대한 적용성이 우수하여 적용사례가 증가하고 있다. 그러나 로드헤더 굴착공법은 일축압축강도 100 MPa 이상인 고강도 암반구간에 대한 굴착효율이 저하되는 한계가 있는 것으로 알려져 있다. 이에 따라 본 연구에서는 고강도 암반구간에 대한 로드헤더 굴착효율 개선방안으로 선균열공법을 제안하고 적용성을 평가하였다. 이를 위해 일축압축강도와 RQD를 함께 고려하여 순굴착속도를 산정할 수 있는 Bilgin 예측식을 활용하여 순굴착속도를 평가하였다. 동일한 일축압축강도인 암반조건에서 RQD가 감소할수록 순굴착속도가 증가하는 것으로 나타났다. 이는 고강도 암반에서 절리가 증가할수록 로드헤더 굴착효율이 증가하는 것으로 판단된다. 또한 현장시험을 통해 고강도 암반구간에 대한 선균열공법의 현장 적용성을 검증하였다. 균열유도공을 중심으로 균열대가 형성되는 것을 확인할 수 있었으며, 이를 통해 고강도 암반구간에 선균열공법 적용이 가능할 것으로 판단된다.

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav;Kumar, Shailendra
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.885-900
    • /
    • 2015
  • This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF

Simulation of crack initiation and propagation in three point bending test using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Nezamabadi, Maryam Firoozi;Karbala, Mohammadamin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.453-463
    • /
    • 2018
  • Three points bending flexural test was modelled numerically to study the crack propagation in the pre-cracked beams. The pre-existing double internal cracks inside the beam models were considered to investigate the crack propagation and coalescence paths within the modelled samples. Notch configuration effects on the failure stress were considered too. This numerical analysis shown that the propagation of wing cracks emanating from the tips of the pre-existing internal cracks caused the final breaking of beams specimens. It was also shown that when two notches were overlapped, they both mobilized in the failure process and the failure stress was decreased when the notches were located in centre line. However, the failure stress was increased by increasing the bridge area angle. Finally, it was shown that in all cases, there were good agreements between the discrete element method results and, the other numerical and experimental results. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

피로균열개구거동을 이용한 짧은균열의 거동 분석 (Short Crack Analysis by Fatigue Crack Opening Behavior)

  • 송삼홍;이경로
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

Impedance-based damage monitoring of steel column connection: numerical simulation

  • Ho, Duc-Duy;Ngo, Thanh-Mong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.339-356
    • /
    • 2014
  • This study has been motivated to evaluate the practicality of numerical simulation of impedance monitoring for damage detection in steel column connection. In order to achieve the objective, the following approaches are implemented. Firstly, the theory of electro-mechanical (E/M) impedance responses and impedance-based damage monitoring method are outlined. Secondly, the feasibility of numerical simulation of impedance monitoring is verified for several pre-published experimental examples on steel beams, cracked aluminum beams, and aluminum round plates. Undamaged and damaged steel and aluminum beams are simulated to compare to experimental impedance responses. An aluminum round plate with PZT patch in center is simulated to investigate sensitive range of impedance responses. Finally, numerical simulation of the impedance-based damage monitoring is performed for a steel column connection in which connection bolts are damaged. From the numerical simulation test, the applicability of the impedance-based monitoring to the target steel column connection can be evaluated.

복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석 (Analysis of fatigue crack growth behavior in composite-repaired aluminum plate)

  • 이우용;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구 (A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass)

  • 정동호;문상조;안대진;정원준;김은관;김동규
    • 터널과지하공간
    • /
    • 제17권3호
    • /
    • pp.216-224
    • /
    • 2007
  • 화약의 동적 충격에너지를 이용하는 발파굴착은 매우 효율적인 터널굴착방법이다. 그러나 진동과 암소음 등의 발파공해가 발생하는 문제점이 있다. 최근 연구를 통해 노치공을 이용한 선균열 암굴착방법은 발파공해와 터널의 여굴을 상당히 줄일 수 있는 것으로 확인되었고 이에 따라 본 연구에서는 노치발파공의 성형을 위한 노치장비개발에 관한 연구를 수행하였다. 노치공을 효율적으로 성형하기 위해 노치비트의 길이, 높이 등을 다양하게 변화시켜 실험을 수행하여 최적화하였고, 천공속도, 천공정밀도를 높이기 위한 천공비트, 노치비트, 아답타, 노치 가이드로 이루어진 노치비트 시스템을 개발하였다.