• 제목/요약/키워드: Pre-coagulation

검색결과 79건 처리시간 0.029초

고농도 휴믹성분이 포함된 강 원수에서 응집-침전 및 오존 공정을 전처리로 적용한 오존 내성막 pilot plant에서의 운전성 및 투과수 수질변화에 관한 연구 (Pre-Coagulation and Pre-Ozonation for Ozone Resisting Microfiltration Membrane Filtration System of a High Humic Contained Surface Water)

  • 이상협;와타나베 요시마사;이석헌;안규홍
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.598-607
    • /
    • 2004
  • In this study, the effects of two pre-treatment processes were observed prior to membrane filtration: pre-coagulation and pre-ozonation. To compare the effect of two above-mentioned pre-treatments, we adopted the four schemes: first one is direct membrane filtration of river surface water, second one is membrane filtration after pre-coagulation, third one is membrane filtration after pre-ozonation and fourth one is membrane filtration after pre-coagulation and pre-ozonation. There are two exceptional characteristics in applied processes. One is the usage of the MF membrane which has high ozone resisting characteristic. Therefore, ozone resides in membrane module during filtration. The other is adoption of Jet Mixed Separator (JMS) as coagulation-sedimentation process. The change in transmembrane pressure and permeate water quality were also examined. As a result, considering the filtration performance efficiency and permeate water quality, the process composed of filtration with combination of both pre-coagulation and pre-ozonation was proved most effective. The improved efficiency was due to the reduction of loading rate of fouling inducing materials to membrane module by coagulation process as well as variable reactions, such as degradation, particle destabilization and coagulation, occurred by residual ozone in membrane module. The additional effect of pre-coagulation before pre-ozonation is suppression of AOC, one of the by-products induced by ozonation. Therefore, combination of pre-coagulation and pre-ozonation is the effective process to overcome the major de-merit of ozonation i.e. by-products formation.

유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구 (Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation)

  • 차재환;신경숙;박승국;신정훈;김병군
    • 상하수도학회지
    • /
    • 제31권1호
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

Recovery Increase by Recycling Backwash Residuals in Microfiltration System

  • Yu, Myong-Jin;Pak, Hong-Kyoung;Sung, Il-Wha
    • 환경위생공학
    • /
    • 제23권4호
    • /
    • pp.13-21
    • /
    • 2008
  • With the rise in membrane applications, residuals management has become a growing challenge for membrane system. The primary residuals of MF/UF (microfiltration/ultrafiltration) system results from the wastes generated during backwashing. Many regulatory agencies, utilities, and water process engineers are unfamiliar with the characteristics and methods for treatment and disposal of membrane residuals. Therefore, this study was performed to investigate the backwash residuals water quality from the pressurized system with and without pre-coagulation, and to suggest approaches for the backwash residuals treatment. Pressurized MF system was installed at Guui water intake pumping station and operated with raw water taken from the Han River. We compared performances with and without the recycling backwash residuals at flux conditions, 50 LMH and 90 LMH with and without pre-treatment (coagulation). Based on the results, recycling of backwash residuals in pressurized system with pre-coagulation showed applicability of backwash residuals managements. Moreover, the recovery rate also increased up to over 99%.

UF 막 여과 공정의 효과적인 전처리 공정으로 분류교반고액분리조(噴流攪拌固液分離槽) (Jet Mixed Separator: JMS) 도입 효과에 관한 연구 (A Study on Effect of Jet Mixed Separator Combination for Pre-treatment of Ultrafiltration Membrane Filtration Process)

  • 이상협;장낙용;渡辺義公
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.38-46
    • /
    • 2005
  • In this research, we tried to combine the coagulation/sedimentation process as pre-treatment with UF membrane filtration to reduce the membrane fouling and to improve the permeate water quality. We used the Jet Mixed Separator (JMS) as coagulation/sedimentation process. We observed that the HPC and E.Coli can't be removed through the direct UF memebrane filtation of surface water. The removal efficiency of dissolved organic substances, indicated by E260 and DOC, was 40% and 15%, respectively. However, the removal efficiency of it increased two time as a result of combination of JMS process as coagulation/sedimentation pre-treatment. This was resulted from the formation of high molecular humic micro-floc through JMS process. The accumulation amount of irreversible cake layer which was not removed by backwashing was less than direct UF membrane filtration of surface water. Moreover, the loading rate of fouling induced substances, such as humic substances and suspended substances, on membrane surface decreased drastically through JMS process. As a result, the accumulation amount of irreversible cake on membrane surface was decreased.

철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구 (Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment)

  • 이상협;장낙용;와타나베 요시마사;최용수
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

응집 플록 성장률 측정기를 이용한 멤브레인 공정의 전처리 응집공정 평가 (Evaluations of Coagulation Process for Membrane Pre-treatment using Floc Growth Rate Analyzer)

  • 손희종;김상구;김도환;강소원;최영익
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.231-238
    • /
    • 2016
  • In this study, we have investigated to find optimal pre-treatment flocculation condition by analyzing the floc growth rate with mixing conditions and the membrane permeation flux for pre-treatment step of the membrane process. The higher mixing intensity showed a constant floc size index (FSI) values, and lower mixing intensity increased the degree of dispersion of the FSI values. Results of comparing the distribution characteristics of the FSI value and the permeation flux were more effective in increasing flux when the FSI values were 0.2 or higher. The degree of dispersion of FSI was relatively large in 40 rpm mixing condition compared to 120 rpm. In 40 rpm mixing condition, it decreased the permeation flux compared to 120 rpm because various sizes of flocs were distributed. Coagulation-UF membrane process enhanced 30%~40% of the flux rate compare to UF alone process, and the coagulation-MF process increased up to 5% of the flux rate compare to MF alone process. Pre-treatment, that is, coagulation process, has been found to be less effects on relatively larger pore size for MF membrane. For UF membrane, the flux was a little bit same when applying only the rapid mixing process or rapid mixing with slow mixing processes together. In case of MF membrane, the flux was improved when rapid mixing process applied with slow mixing process together.

응집침전공정에서 수온, 응집제 종류, 전염소 주입에 따른 크립토스포리 디움과 지아디아 제거 효율 변화에 관한 연구 (The Effects of Temperature, Coagulants, and Pre-chlorination on the Removal of Cryptosporidium and Giardia by Coagulation Process)

  • 박상정;정영희;정현미
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.531-538
    • /
    • 2007
  • The effects of temperature, coagulants and pre-chlorination on the removal of turbidity and pathogenic protozoa by coagulation process were investigated using jar test of lab scale. In room temperature ($25^{\circ}C$), protozoa were removed over 1.0log at the proper concentration range of coagulants, and up to over 2log at the optimal concentration of coagulants. Considering the 1.5log target removal for Giardiain the processes of coagulation, sedimentation, and filtration, this results implies that the target could be satisfied. However, the removal of protozoa and turbidity was reduced, and optimal PAC concentration was narrowed in low turbidity and cold temperature ($5^{\circ}C$). These results suggest that the drop of coagulation efficiency may be occurred in winter if the conditions are not optimized. Despite the effect of water temperature, the relation of turbidity and protozoa removal appeared to be good. The various kinds of coagulants did not significantly affected for removals of turbidity and protozoa when the concentrations of $Al_2O_3$ were considered. Prechlorination did not increase or decrease the removal of turbidity and protozoa in optimum condition at room temperature, pH 7, 15mg/L of PAC concentration.

분말활성탄 접촉-응집에 의한 생활폐기물 및 산업폐기물 매립지 침출수의 처리 (Treatment of Leachate from Municipal Landfill and Industrial Landfill by PAC Adsorption-Coagulation)

  • 김수영;장덕;김영태
    • 상하수도학회지
    • /
    • 제11권4호
    • /
    • pp.110-117
    • /
    • 1997
  • Performances of combined adsorption and coagulation were evaluated as one of the options for pre-treatment or post-treatment of MSW landfills leachate and industrial landfill leachate. The COD and color removals of leachate from an old MSW landfill were 35% and 33% at an alum dose of 300mg/L with preceding PAC(powdered activated carbon) dose of 200mg/L, respectively. The COD and color removals of leachate from an young MSW landfill were 58% and 25% at an alum dose of 700mg/L and PAC dose of 500mg/L, respectively. The COD and color of biologically treated leachate from an industrial waste landfill were removed up to 32% and 68%, respectively, with pH control at addition of 500mgAlum/L and 1,000mgPAC/L. Adsorption and coagulation process with pH control showed better COD and color removals than the process without pH control for biologically treated leachate from an industrial waste landfill. The color removal was influenced greatly by pH control, while COD removal was not significant. No difference in removal efficiency was observed between adsorption-coagulation and coagulation-adsorption process. The COD removal was accomplished mainly by adsorption, while coagulation was a key mechanism of color removal. However, the mechanism of COD removal was obscure, when BOD/COD ratio was high. Maximum net increases in COD and color removals by the adsorption-coagulation process were respectively 45% and 46% compared with the unit process of adsorption or coagulation, although those removals depended on leachate characteristics. Thus, adsorption-coagulation process was considered to be effective for pre- and post-treatment of landfill leachate, and has distinct features of simple, flexible, stable and reliable operation against fluctuation leachate quality and flowrate.

  • PDF

폐기물 소각시 생성되는 유해 중금속물질과 연소실내 비산재와의 응축, 응집 현상에 대한 연구 (Condensation and coagulation of metallic species with fly ash particles in a waste incinerator)

  • 유주현;황정호
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.264-274
    • /
    • 1997
  • A numerical analysis on condensation and coagulation of the metallic species with fly ash particles pre-existing in an incinerator was performed. Waste was simplified as a mixture of methane, chlorine, and small amounts of Pb and Sn. Vapor-phase amounts of Pb- and Sn -compounds were first calculated assuming a thermodynamic equilibrium state. Then theories on vapor-to-particle conversion, vapor condensation onto the fly ash particles, and particle-particle interaction were examined and incorporated into equations of aerosol dynamics and vapor continuity. It was assumed that the particles followed a log-normal size distribution and thus a moment model was developed in order to predict the particle concentration and the particle size distribution simultaneously. Distributions of metallic vapor concentration (or vapor pressure) were also obtained. Temperature drop rate of combustion gas, fly ash concentration and its size were selected as parameters influencing the discharged amount of metallic species. In general, the coagulation between the newly formed metal particles and the fly ash particles was much greater than that between the metal particles themselves or between the fly ash particles themselves. It was also found that the amount of metallic species discharged into the atmosphere was increased due to coagulation. While most of PbO vapors produced from the combustion were eliminated due to combined effect of condensation and coagulation, the highly volatile species, PbCl$_{2}$ and SnCl$_{4}$ vapors tended to discharge into the atmosphere without experiencing either the condensation or the coagulation. For Sn vapors the tendency was between that of PbO vapors and that of PbCl$_{2}$ or SnCl$_{4}$. To restrain the discharged amount of hazardous metallic species, the coagulation should be restrained, the number concentration and the size of pre-existing fly ash particles should be increased, and the temperature drop rate of combustion gas should be kept low.

Alum과 PACl을 이용한 응집처리 (Chemical Coagulation Treatment Using Alum and PACl in Complex Wastewater)

  • 성일화
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.53-57
    • /
    • 2009
  • In order to treat the complex wastewater containing organic compound and solids, pre-treatment system associated with molecular separation process were investigated. The reductions of COD and turbidity were obtained after coagulation processes using Alum (Aluminium sulfate, $Al_2(SO_4)_2{\cdot}18H_{2}O$) and PACl (poly aluminium chloride as 17% $Al_{2}O_{3}$). The results of study were as follows: using variable dosage of Alum, COD removal was highest at 4,000 mg/l, and the reduction of COD and turbidity was 42% and 92%, respectively. The optimum coagulation would be effective at pH 7.3 than pH 9.0 by the addition of alum at a concentration of 6,000 mg/l and PACl was add at 4.25% in raw complex wastewater with 2,000 mg/l alum at pH 7.3, the reduction of COD was reduced by 32%. But coagulation aid experiments indicated that PACl would be more effective in sludge separation ability than COD removal efficiency.