• 제목/요약/키워드: Pre-Crack

검색결과 276건 처리시간 0.026초

SiCf/SiC 복합재료의 굽힘 강도 특성 및 균열 치유 효과 (Bending Strength and Crack Healing of SiCf/SiC Composite Material)

  • 안석환;도재윤;문창권;남기우
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.94-102
    • /
    • 2013
  • Manufactured $SiC_f/SiC$ composites by NITE method was investigated fracture characteristics according to the size of the surface crack. Coated surface crack with a $SiO_2$ colloid in several ways was evaluating the possibility of healing. The strength of CCS and UCS is 313 and 230MPa, respectively and it is about 1/3 of the SPS. Bending strength of $SiC_f/SiC$ composites has no effect with the pre-crack size to the critical crack size. $SiC_f/SiC$ composites can not generate large amount of $SiO_2$ oxides to the bottom of crack, and is only generated randomly on surfaces, and can not contribute to the recovery of bending strength.

확률적 방법에 의한 크리프 균열성장 계수의 분포 추정 (Estimation for the Distribution of Creep Crack Growth Coefficients by Probabilistic Assessment)

  • 이상호;윤기봉;최병학;민두식;안종석;이길재;김선화
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.791-797
    • /
    • 2010
  • The creep crack growth rate (da/dt) of the Cr-Mo steels tested by pre-crack and the voltage (or resistance) variables were related into fracture parameter (Ct), crack growth coefficient (H), and an exponent (q) in the parts of Base, weld and HAZ. The fracture parameter (Ct) has various variables relating to the specimen and crack shape, applied stress, and creep strain curve. The H and q was inferred by OLS regression (ordinary least square method), and the H values were solved in statistics and probability assessment, which were attained fromPDF's distributions (probability density function). The HAZ part has the highest value of q by OLS regression and the widest distribution of H by PDF of WEIBULL, which means that the crack sensitivity of HAZ should be cautioned against the creep crack growth and failure.

초소형 박막구조물의 기계적 특성 평가소자 설계 및 분석 기법 (Analytical Methodology and Design Consideration of Advanced Test Structure for the Micromechanical Characteristics of MEMS device)

  • 이세호;박병우;권동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1010-1013
    • /
    • 1998
  • In micromechanical system (MEMS) such as microactuators. thin film has been widely used as structural material. MEMS materials have difference with bulk in terms of mechanical properties. So, we design the advanced test structure for micromechanical properties of MEMS. The designed structure includes the newly developed pre-crack and it is driven by electrostatic force. To measure the fracture toughness, the pre-crack formation in the test structure is developed with conventional etching process. The advanced test structure is fabricated by application of semiconductor technology. After this, we propose analytical methodology to evaluate the fracture toughness and fatigue properties through a prediction of crack behavior from the variations of stiffness and frequency. Additionally, life time of a mirror plane used in DVD(Digital Video Disk) is measured as a function of capacitance and applied voltage under the accelerated conditions. Ultimately, we propose the method to evaluate the micromechanical reliabilities of the MEMS materials using the advanced test structure.

  • PDF

GFRP Bar 및 GSP로 보수된 철근 콘크리트 보의 피로강도 연구 (A Study on the Fatigue Strength of the Reinforced Concrete Beams Repaired with Glass Fiber Reinforced Polymer(GFRP) Bar and Glass Fiber Steel Plate(GSP))

  • 김재영;김충호
    • 한국해안·해양공학회논문집
    • /
    • 제21권2호
    • /
    • pp.191-195
    • /
    • 2009
  • 손상된 철근콘크리트 보를 모의하기 위해 사전균열을 발생시킨 후, GFRP Bar와 GSP 매입공법으로 보수하여 피로실험을 수행하였다. 피로실험 결과, 실험보는 피로하중 초기 싸이클에서 대부분의 잔류처짐과 균열이 발생하고 싸이클 수에 따른 이들의 증가율은 미미하였다. 보수보의 정적강도는 보수하지 않은 보에 비해 크게 증가하였지만, 피로강도는 감소하였다. S-N 곡선에서, GFRP Bar 보수보의 피로강도는 정적강도의 58%, GSP 보수보의 피로강도는 52%였다.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

균열정지현상에 관한 기초적 연구 (A Basic Study on the Crack Arrest Phenomena)

  • 이억섭;김상철;송정일
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.112-118
    • /
    • 1990
  • 본 연구에서는 ASTM-E24.01.06에서 제안하고 있는 실험방법을 응용하여 균열 정지 파괴인성값을 측정하였다.즉 쐐기와 분리형 부싱(wedge and split bushing)으 로 압축하중을 가함으로 균열선 웨지하중 시편[crack line wedge loaded specimen(CL- WL시편)]에 인장력을 발생시켜서 균열정지 응력확대계수( $K_{1a}$)를 결정하였다. 그리고 균열개시 응력확대계수가 균열정지 응력확대계수에 미치는 영향들을 여러가지 재료들에 대하여 체계적으로 검토하였다.다.

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • 마이크로전자및패키징학회지
    • /
    • 제5권2호
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

유리섬유 보강패널로 보강된 철근콘크리트 슬래브의 구조거동에 관한 연구 (Structural Behavior of R/C Slabs Strengthened by Glass Fiber Reinforced Plastic-Panels)

  • 김우;김행준;이성문
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.751-756
    • /
    • 2000
  • The structural behavior of reinforced concrete slabs strengthened by glass fiber reinforced plastic-panels experimentally investigated. The experimental variables are strengthening length, strengthening width, and pre-crack existence. The pre-cracked slabs are initially loaded to 70 percent of ultimate flexural capacity and subsequently repaired with GFRP-Panels bonded to the tension face of the slabs. Five one-way slabs were tested to failure. The main failure mode of strengthened slabs is separation failure by crack propagation from load point section to end of plate. The behavior of strengthened slabs is represented by a maximum load, load-deflection curves an load-strain curves.

  • PDF