• Title/Summary/Keyword: Prandtl number

Search Result 188, Processing Time 0.028 seconds

Analysis of Radiative-Convective Heat Transfer about a Circular Cylinder in Crossflow Using Finite Volume Radiation Solution Method (유한체적 복사전달해석법을 이용한 주유동중에 놓인 원형실린더 주위에서의 복사-대류 열전달해석)

  • Lee, Gong-Hun;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.346-358
    • /
    • 1996
  • A finite volume radiation solution method was applied to a non- orthogonal coordinate system for the analysis of radiative-convective heat transfer about a circular cylinder in crossflow. The crossflow Reynolds number based on the cylinder radius was 20, and the fluid Prandtl number was 0.7. The radiative heat transfer coupled with convection was reasonably predicted by the finite volume radiation solution method. The investigation includes the effects of conduction- to-radiation parameter, optical thickness, scattering albedo and cylinder wall-emissivity on heat transfer about the cylinder. As the conduction- to-radiation parameter decreases, the radiative heat transfer rate increases and conduction rate as well due to the increase in temperature gradient on the cylinder wall which is caused by radiation enhancement. With an increase in the optical thickness, the Nusselt number increases significantly and the temperature gradient shows similar behavior. Though the radiative heat transfer increases with the scattering albedo, the total heat transfer decreases. This is because the decrease in the conduction heat transfer exceeds the increase in the radiation heat transfer. As the wall- emissivity increases, the radiation absorbed in the vicinity of the cylinder wall increases and thereby the total heat transfer increases, even though the conduction heat transfer decreases.

Analysis of Natural Convection Core Configuration at Boundary Layer Flow Regime in a Low Aspect Ratio Rectangular Enclosure (낮은 종횡비의 직각밀폐용기내의 자연대류 경계층 흐름영역에서의 코어형상에 관한 근사해석)

  • 이진호;김무현;전주명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.349-358
    • /
    • 1988
  • Natural convection velocity and temperature profiles are obtained approximately in the core at boundary layer flow regime for varying Prandtl number in a low aspect ratio rectangular Enclosure. Analysis is based on the formally obtained core flow equations using the multiple scales method. Results show good agreement with the existing works for $P_{r}$ ~ 1. No comparison, however, is possible yet for $P_{r}$ >> 1 and $P_{r}$ < 1 due to the lack of available date. It is shown here that boundary layer flow regimes are governed by two parameters, A $R_{a}$$^{1}$4/ and A( $P_{r}$ $R_{a}$)$^{1}$4 for $P_{R}$.geq. 1 and $P_{r}$ < 1 respectively.ely.ively.ely.y.

Prediction of transition in Czochralski process (초크랄스키 공정에서의 천이예측)

  • 최정일;성형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.108-116
    • /
    • 1997
  • A laboratory experiment was made of critical transition flow modes in Czocllralski convection. Numerical computation was also made to delineate the dynamic transition. The period of temperature oscillation ($t_p$) and the interval of temperature oscillation ($\Delta\theta$) were scrutinized to capture the critical transition regime. The mixed convection parameter was varied in the range of $0.134\le Ra/PrRe^2 \le3.804$. The data from calculation were in good agreement with ones from experiment. The influence of the Prandtl number on the transition was examined for Pr = 910, 4445 and 8889. To understand the transition mechanism, the detailed temperature oscillation modes, the isolines of meridional temperature and the axial velocity profiles were investigated.

  • PDF

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate (수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

CHARACTERISTICS OF THE FLOW AND HEAT TRANSFER AROUND A WAVY CYLINDER (삼차원 원형주상체의 축방향 직경변화가 열.유동장에 미치는 영향)

  • Lee, Chang-Yeol;Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.131-136
    • /
    • 2008
  • Three-dimensional characteristics of fluid flow and heat transfer around a wavy circular cylinder having sinusoidal variation in cross sectional area along the spanwise direction are numerically investigated using the immersed boundary method. The three different wavelengths of ${\pi}/4$, ${\pi}/3$ and ${\pi}/2$ and at the fixed wavy amplitude of 0.1 have been considered to investigate the effects of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The time- and total surface-averaged Nusselt number for a wavy cylinder with is larger than that for a smooth cylinder, whereas that with ${\lambda}={\pi}/4$ and ${\pi}/3$ is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of ${\lambda}={\pi}/4$, ${\pi}/3$ and ${\pi}/2$ is larger than that for a smooth cylinder.

  • PDF

Thermal Instability and Heat Transfer Correlations of Laminar Flow over Isothermal Horizontal Flat Plate (등온 수평 평판 위를 지나는 층류유동 의 열적 불안전성 및 열전달 상관관계)

  • 박병완;유정열;최창균;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.613-620
    • /
    • 1985
  • An analysis on the thermal instability of horizontal Blasius flow in the form of longitudinal vortices has been carried out by introducing the 3-dimensional spatial dependence of the disturbance quantities. The stability problem has been simplified significantly by considering the limiting case of infinite Prandtl number and by skilfully replacing the boundary conditions at infinity with the interface conditions at the edge of the thermal boundary layer (or by simply confining the thermal disturbances in the thermal boundary layer). The advantage of this approach is that the critical values marking the onset of thermal instability can be readily obtained as solutions of the eigenvalues problems formulated by a 6*6(or a 5*5) determinant. Present analysis provides reasonable explanations on the existing experimental and theoretical data. Especially, the heat transfer correlation based on the present analysis agrees well with the existing experimental data.

A Numerical Study of The Motion of a Circular Cylinder Suspended in a Square Enclosure (사각 밀폐계 내 자연대류에 의한 원형 실린더의 운동 특성에 관한 수치적 연구)

  • Son, Seong-Wan;Jeong, Hea-Kown;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.727-734
    • /
    • 2010
  • The present study numerically investigates the motion of a solid body suspended in the square enclosure with natural convection. A two-dimensional circular cylinder levitated thermally has been simulated by using thermal lattice Boltzmann method(TLBM) with the direct-forcing immersed boundary method. To deal with the ascending, falling or levitation of a circular cylinder in natural convection, the immersed boundary method is expanded and coupled with the TLBM. The circular cylinder is located at the bottom of a square enclosure with no restriction on the motion and freely migrates due to the Boussinesq approximation which is employed for the coupling between the flow and temperature fields. For different density ratio between the cylinder and the fluid, the motion characteristics of the circular cylinder for various Grashof numbers have been carried out. The Prandtl number is fixed as 0.7.

CFD Analysis of Natural Convection Flow Characteristics of Various Gases in the Spent Fuel Dry Storage System

  • Shin, Doyoung;Jeong, Uiju;Jeun, Gyoodong;Kim, Sung Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • Objective of this study is to compare the inherent characteristics of natural convection flow inside the canister of spent fuel dry storage system with different backfill gases by utilizing computational fluid dynamics (CFD) code. Four working fluids were selected for comparison study. Helium currently used backfill gas for canister, air, nitrogen, and argon are frequently used as coolant in many heat transfer applications. The results indicate that helium has very distinct conductive behavior and show very weak natural convective flow compared to the others. Argon showed the strongest natural convective flow but also the worst coolability. Air and nitrogen showed similar characteristics to each other. However, due to difference in Prandtl number, nitrogen showed more effective natural convective flow. These results suggest that experimental validation for the nitrogen is needed to investigate the potential coolability other than currently commercially used helium.