• Title/Summary/Keyword: Practical mixed specimen

Search Result 5, Processing Time 0.025 seconds

Residual Voltage Properties of EPR Cables and Sheets (EPR케이블과 시트의 잔류전압 특성)

  • Lee, Sung-Ill;Bae, Duck-Kweon;Kim, Min-Ho;Song, Kee-Tae;Lee, Won-Jae;Oh, Yong-Chul;Joo, In-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.291-292
    • /
    • 2008
  • This study used EPR's sheet and cable as a specimen, and measured residual voltage depending on the induced voltage, thickness of the sheet, and shape of the sheet and cable. The results of the study lead to the following conclusion: 1) The residual voltage increased in proportion to the induced voltage as time increases; 2) The residual voltage of the basic mixed specimen and practical mixed specimen increased as time increased; 3) The peak of the cable appeared earlier than that of the sheet in both of the basic mixed specimen and practical mixed specimen.

  • PDF

Fatigue Crack Propagation Behavior under Mixed Mode Loading (혼합모드 하중에서의 피로균열 전파거동)

  • 송삼홍;이정무;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

Effect of Recycled Coarse Aggregate (RCA) Replacement Level on the Bond Behaviour between RCA Concrete and Deformed Rebars (순환 굵은골재의 혼입률에 따른 콘크리트와 이형철근의 부착 거동)

  • Jang, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • In this study, mixed recycled coarse aggregate (RCA) was produced by mixing RCA from waste concrete in order to evaluate a new method of RCA production. Bond strength between reinforcing bars and RCA concrete was qualitatively evaluated as a part of continuous studies to establish design code of reinforced concrete structural members using recycled aggregate. For practical application, specimens were manufactured with the ready mix RCA concrete. Parameters investigated include: concrete compressive strength (i.e 21, 27 and 40 MPa), replacement levels (i.e 0, 30, 60 and 100%), bar position (i.e vertical and horizontal) and bar location (75 and 225 mm). For the pull-out test, each specimen was in the form of a cube, with each side of 150 mm in length and a deformed bar, 16 mm in diameter, was embedded in the center of each specimen. From the test results, the most of HT type specimen with compressive strength of 21 and 27 MPa showed lower bond strength than the ones provided in CEB-FIP and considered in reinforcement location factor ($\alpha\;=\;1.3$). It was reasoned that bonded area of top bar specimen was reduced at the soffit of reinforcement because of bleed water of fresh concrete. Therefore the reinforcement location factor in current KCI design code should be reviewed and modified.

Basic Study on the Characteristics of Wooden Sidewalk Pavement Material using Wood Waste Chip (폐목재 칩을 활용한 목질계 보도포장재의 특성에 대한 기초연구)

  • Choi, Jae Jin;Song, Jin Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.413-420
    • /
    • 2011
  • An experiment was conducted to suggest the road pavement material combining wooden chip crushed from little useful roots and branches from logging sites or wood waste from construction sites with urethane resin. For the specimen, the mass ratio of urethane resin to construction wood waste chip/lumber waster chip was set to three different levels of 0.5, 0.75, and 1.0, which was measured, mixed with mixer, and molded; 7 days after, tensile strength test, elasticity test using golf balls and steel balls, permeability coefficient measurement, and flammability test were executed. As the result, the tensile strength of the specimen at the dry state in the air exhibited the range of 0.2-1.1MPa, and there was no change after 7 days of aging. When submerged in water, however, the strength was partially diminished; the diminishing rate was greater for less urethane resin usage, and therefore it appears desirable to set the mass ratio of resin to the wood waste chip over 0.75 to consider the moisture intrusion by precipitation and such. As the result of elasticity test, the GB and SB coefficients of the specimen using wood waste chips and urethane resin were measured to be low at below 20%, exhibiting excellent elasticity as road pavement material. Also, the permeability coefficient was over 0.5mm/sec for specimens of all combinations, exceeding the standard value required after construction for permeable pavement material, and the flammability of wood-type pavement material was evaluated to have no practical issues.