• Title/Summary/Keyword: Practical hazard assessment

Search Result 29, Processing Time 0.034 seconds

Safety Assessment of LNG Transferring System subjected to gas leakage using FMEA and FTA

  • Lee, Jang-Hyun;Hwang, Seyun;Kim, Sungchan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.125-135
    • /
    • 2017
  • The paper considers the practical application of the FMEA(Failure Mode and Effect Analysis) method to assess the operational reliability of the LNG(Liquefied Natural Gas) transfer system, which is a potential problem for the connection between the LNG FPSO and LNG carrier. Hazard Identification (HAZID) and Hazard operability (HAZOP) are applied to identify the risks and hazards during the operation of LNG transfer system. The approach is performed for the FMEA to assess the reliability based on the detection of defects typical to LNG transfer system. FTA and FMEA associated with a probabilistic risk database to the operation scenarios are applied to assess the risk. After providing an outline of the safety assessment procedure for the operational problems of system, safety assessment example is presented, providing details on the fault tree of operational accident, safety assessment, and risk measures.

Assessment of Thermal Hazard on Esterification Process in Manufacture of Concrete Mixture Agents by Multimax Reactor System (Multimax Reactor System을 이용한 시멘트 혼화제 제조시 에스테르화공정의 열적 위험성 평가)

  • Han, In-Soo;Lee, Keun-Won;Pyo, Don-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2009
  • The risk assessment of thermal hazard to identify chemical or process hazard during early process developments have been considered. The early identification of thermal hazards associated with a process, such as rapid heats of reaction, exothermic decompositions, and the potential for thermal runaways before any large scale operations are undertaken. This paper presents to evaluate the safe operating parameters/envelope for exist plant operations. The assessment of thermal hazard with operating conditions such as amount of process materials, inhibitor, and catalyst on esterification process in manufacture of concrete mixture agents are described. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool. The aim of the study was to evaluate the thermal risk of process material and mixture in terms of safety security to be practical applications in esterification process. It suggested that we should provide the thermal hazard of reaction materials to present safe operating conditions with cause of accident through this study.

Earthquake hazard and risk assessment of a typical Natural Gas Combined Cycle Power Plant (NGCCPP) control building

  • A. Can Zulfikar;Seyhan Okuyan Akcan;Ali Yesilyurt;Murat Eroz;Tolga Cimili
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.581-591
    • /
    • 2023
  • North Anatolian Fault Zone is tectonically active with recent earthquakes (Mw7.6 1999-Kocaeli and Mw7.2 1999-Düzce earthquakes) and it passes through Marmara region, which is highly industrialized, densely populated and economically important part of Turkey. Many power plants, located in Marmara region, are exposed to high seismic hazard. In this study, open source OpenQuake software has been used for the probabilistic earthquake hazard analysis of Marmara region and risk assessment for the specified energy facility. The SHARE project seismic zonation model has been used in the analysis with the regional sources, NGA GMPEs and site model logic trees. The earthquake hazard results have been compared with the former and existing earthquake resistant design regulations in Turkey, TSC 2007 and TBSCD 2018. In the scope of the study, the seismic hazard assessment for a typical natural gas combined cycle power plant located in Marmara region has been achieved. The seismic risk assessment has been accomplished for a typical control building located in the power plant using obtained seismic hazard results. The structural and non-structural fragility functions and a consequence model have been used in the seismic risk assessment. Based on the seismic hazard level with a 2% probability of exceedance in 50 years, considered for especially these type of critical structures, the ratios of structural and non-structural loss to the total building cost were obtained as 8.8% and 45.7%, respectively. The results of the study enable the practical seismic risk assessment of the critical facility located on different regions.

Development of Practical Rock Slope Hazard Evaluation Method (현장실무자용 암반사면 위험도평가법 개발)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Byung-Joo;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.322-331
    • /
    • 2007
  • Hundreds of rock slopes are constructed along the road, highway and railroad in mountainous Kangwon province and managed by each authorities concerned. It is practically not possible to carry out detailed rock slope investigation owing to the tremendous number of slopes and budgetary limit. Therefore, it is reasonable to perform a step-by-step investigation consisted of basic and detailed survey program and practical rock slope hazard assesment method for person in charge is strongly required. Through the development and application of KSMR (Korean Slope Mass Rating), it was found that KSMR could be practically used as an alternative of SMR though the number of inputs were reduced. In addition, the difference of hazard assessment between KSMR and experts decreased in case of considering the height of slope.

Improving Self-control Safety & Management Ability of Construction Contractors (건설업체 자율안전관리 능력제고 방안)

  • Lee, Song;Son, Gi-Sang;Choi, Won-Il;Oh, Tae-Sang;Chae, Jum-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.112-118
    • /
    • 2000
  • This paper is resulted from the research to activate Self-control Safety Management system that adopted to improve an assessment system for Hazard Prevention Plan. And members of company, university and research institute have jointly participated in the research. First, it is investigated that introduced background and processing method with existing practical data & materials references in order to understand what domestic Self-control Safety Management system will be available for. And general construction company at site have their ability to assess Hazard Prevention Plan by mailing questionnaire to on thousand site, visits, and interviews. Also, It is investigated how much they have the assessment ability. It is selected to do a questionnaire survey for the status of self-regulatory safety assessment ability of the designated self-regulatory companies in order to produce and enhance the self-regulatory assessment ability and the necessity of Self-control Safety Management system. Finally, it is selected to do a questionnaire survey for fixing and the enhance Self-control Safety Management system of general construction contractors.

  • PDF

Development of an earthquake-induced landslide risk assessment approach for nuclear power plants

  • Kwag, Shinyoung;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1372-1386
    • /
    • 2018
  • Despite recent advances in multi-hazard analysis, the complexity and inherent nature of such problems make quantification of the landslide effect in a probabilistic safety assessment (PSA) of NPPs challenging. Therefore, in this paper, a practical approach was presented for performing an earthquake-induced landslide PSA for NPPs subject to seismic hazard. To demonstrate the effectiveness of the proposed approach, it was applied to Korean typical NPP in Korea as a numerical example. The assessment result revealed the quantitative probabilistic effects of peripheral slope failure and subsequent run-out effect on the risk of core damage frequency (CDF) of a NPP during the earthquake event. Parametric studies were conducted to demonstrate how parameters for slope, and physical relation between the slope and NPP, changed the CDF risk of the NPP. Finally, based on these results, the effective strategies were suggested to mitigate the CDF risk to the NPP resulting from the vulnerabilities inherent in adjacent slopes. The proposed approach can be expected to provide an effective framework for performing the earthquake-induced landslide PSA and decision support to increase NPP safety.

Development of Strategics for Establishment of Spatial Information by Assessment of GIS-Based Flood Risk (GIS기반 홍수위험도 평가를 통한 공간정보 구축 방안 개발)

  • Sim, Gyoo Seong;Lee, Choon Ho;Lee, Tae Geun;Jee, Gye Hwan
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • In this study, we evaluated flood risk by applying calculation fomula considering practical risk calculated by inundation analysis information through 2D inundation analysis, suggested a plan that provides a standardized information system. Generally, we evaluated flood risk to people and classified four degrees by using inundation depth, velocity, Debris Factor and Flood Hazard Rating relationship because current flood risk assessment method based inundation depth and area was considered to not fully reflect the actual risk to people on flood. We simulated overflow and levee break scenarios according to 500 year and 200 year floods, respectively, by using Flumen which is a 2D flood inundation model for Geumho river basin in Daegu. The result of this study could contribute to inform practical risk information to people in expected flood area. This study can be useful for the fields of disaster estimatingsuch as information analysis, evaluation, planning by offering Risk information based on standardized information system.

Applications of Instream Flow Assessment Method for Ecologic Stream Establishment (생태하천 조성을 위한 유지유량 산정기법의 적용)

  • Lee, Beum-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.135-144
    • /
    • 2010
  • Many plans of ecologic streams are developed and performed in several regions. In spite of obtaining of instream water is most important problem to composite an ecologic stream, assessment methods for instream water are too various to estimate an optimal result. This study shows practical assessment method which add regional needs such as stream view and necessary water quality level to the traditional method considering water shortage, water quality, ecologic system and necessary flows. It also shows a feasibility of instream water obtaining project in Daejeon city.

Hazard analysis and monitoring for debris flow based on intelligent fuzzy detection

  • Chen, Tim;Kuo, D.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • This study aims to develop the fuzzy risk assessment model of the debris flow to verify the accuracy of risk assessment in order to help related organizations reduce losses caused by landslides. In this study, actual cases of landslides that occurred are utilized as the database. The established models help us assess the occurrence of debris flows using computed indicators, and to verify the model errors. In addition, comparisons are made between the models to determine the best one to use in practical applications. The results prove that the risk assessment model systems are quite suitable for debris flow risk assessment. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

A Study on the Application Plan of the Optimized Risk Assessment Model in Construction Field (최적 위험도 평가 모델의 건설업 분야 적용 방안에 관한 연구)

  • cho, Jae-hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.53-62
    • /
    • 2017
  • It has come to attention that a risk-assessing organization, that will benchmark a company's safety department, is imperative, following an increase in large-scale SOC-business project, construction of higher-raised buildings, development of underground space; all that have increase accident rates. Having faced problems that arise in firms that demand diversity, complexity and instantaneity, the purpose of the thesis is to arrive at efficient and practical problem-solving means. In order to solve the problems that would surface theoretically during an actual risk assessment, the state of the operation systems of the top five national construction firms having a hazard rate of 0.25 times less than the average rate have been analyzed, while a hierarchal recognition research of the employees who not only function at the operating level but are the practice subjects of a firm, has also been conducted, bringing the main text.