DOI QR코드

DOI QR Code

Earthquake hazard and risk assessment of a typical Natural Gas Combined Cycle Power Plant (NGCCPP) control building

  • A. Can Zulfikar (Istanbul Technical University, Disaster Management Institute) ;
  • Seyhan Okuyan Akcan (Bogazici University, Civil Engineering Department) ;
  • Ali Yesilyurt (Istanbul Technical University, Disaster Management Institute) ;
  • Murat Eroz (Asset Management and Sustainability, EnerjiSA Uretim) ;
  • Tolga Cimili (Asset Management and Sustainability, EnerjiSA Uretim)
  • Received : 2022.11.12
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

North Anatolian Fault Zone is tectonically active with recent earthquakes (Mw7.6 1999-Kocaeli and Mw7.2 1999-Düzce earthquakes) and it passes through Marmara region, which is highly industrialized, densely populated and economically important part of Turkey. Many power plants, located in Marmara region, are exposed to high seismic hazard. In this study, open source OpenQuake software has been used for the probabilistic earthquake hazard analysis of Marmara region and risk assessment for the specified energy facility. The SHARE project seismic zonation model has been used in the analysis with the regional sources, NGA GMPEs and site model logic trees. The earthquake hazard results have been compared with the former and existing earthquake resistant design regulations in Turkey, TSC 2007 and TBSCD 2018. In the scope of the study, the seismic hazard assessment for a typical natural gas combined cycle power plant located in Marmara region has been achieved. The seismic risk assessment has been accomplished for a typical control building located in the power plant using obtained seismic hazard results. The structural and non-structural fragility functions and a consequence model have been used in the seismic risk assessment. Based on the seismic hazard level with a 2% probability of exceedance in 50 years, considered for especially these type of critical structures, the ratios of structural and non-structural loss to the total building cost were obtained as 8.8% and 45.7%, respectively. The results of the study enable the practical seismic risk assessment of the critical facility located on different regions.

Keywords

References

  1. Akkar, S. and Bommer, J.J. (2010), "Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East", Seismol. Res. Lett., 81(2), 195-206. https://doi.org/10.1785/gssrl.81.2.195.
  2. Buritica Cortes, J.A., Sanchez-Silva, M. and Tesfamariam, S. (2015), "A hierarchy-based approach to seismic vulnerability assessment of bulk power systems", Struct. Infrastruct. Eng., 11(10), 1352-1368. https://doi.org/10.1080/15732479.2014.964732.
  3. Burton, C.G. and Silva, V. (2016), "Assessing integrated earthquake risk in OpenQuake with an application to Mainland Portugal", Earthq. Spectra, 32(3), 1383-1403. https://doi.org/10.1193/120814EQS20.
  4. Cauzzi, C. and Faccioli, E. (2008), "Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records", J. Seismology, 12(4), 453. https://doi.org/10.1007/s10950-008-9098-y.
  5. Chiou, B.J. and Youngs, R.R. (2008), "An NGA model for the average horizontal component of peak ground motion and response spectra", Earthq. Spectra, 24(1), 173-215. https://doi.org/10.1193/1.2894832.
  6. Cornell, C.A. (1968), "Engineering seismic risk analysis", Bull. Seismol. Soc. Am., 58(5), 1583-1606. https://doi.org/10.1785/BSSA0580051583.
  7. Dabbeek, J., Silva, V., Galasso, C. and Smith, A. (2020), "Probabilistic earthquake and flood loss assessment in the Middle East", Int. J. Disaster Risk Reduction, 49, 101662. https://doi.org/10.1016/j.ijdrr.2020.101662.
  8. Eidinger, J., Davis, C., Tang, A. and Kempner, L. (2012), "M 9.0 Tohoku earthquake March 11 2011 performance of water and power systems", G & E Engineering Systems Inc, Oakland, CA.
  9. FEMA 356 (2000), NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington.
  10. FEMA E-74 (2011), NEHRP a practical guide for the Reducing the Risks of Nonstructural Earthquake Damage. Federal Emergency Management Agency, Washington.
  11. FEMA, HAZUS-MH MR5 (2014), Technical Manual, Department of Homeland Security - Federal Emergency Management Agency, Washington, D.C.
  12. Fujino, Y., Siringoringo, D.M. and Abe, M. (2009), "The needs for advanced sensor technologies in risk assessment of civil infrastructures", Smart Struct. Syst., 5(2), 173-191. https://doi.org/10.12989/sss.2009.5.2.173.
  13. Giovinazzi, S., Wilson, T.M., Davis, C., Bristow, D., Gallagher, M., Schofield, A. and Tang, A. (2011), "Lifelines performance and management following the 22 February 2011 Christchurch earthquake", New Zealand: highlights of resilience. https://doi.org/10.5459/bnzsee.44.4.402-417.
  14. Howard, S., Riker, C., Knight, B. and Knoles, S. (2015), "Innovative analysis and seismic retrofit of 500 kV flexible bus substation support structures", Electrical Transmission and Substation Structures 2015, 438-451. https://doi.org/10.1061/9780784479414.035.
  15. Kepenek, E., Korkmaz, K.A. and Gencel, Z. (2020), "Seismic risk investigation for reinforced concrete buildings in Antalya, Turkey", Comput. Concrete, 26(3), 203-211. https://doi.org/10.12989/cac.2020.26.3.203.
  16. Khanbabazadeh, H., Zulfikar, A.C. and Yesilyurt, A. (2020), "Basin edge effect on industrial structures damage pattern at clayey basins", Geomech. Eng., 23(6), 575-585. https://doi.org/10.12989/gae.2020.23.6.575.
  17. Kwasinski, A., Eidinger, J., Tang, A. and Tudo-Bornarel, C. (2014), "Performance of electric power systems in the 2010-2011 christchurch, new zealand, earthquake sequence", Earthq. Spectra, 30, 205-230. https://doi.org/10.1193/022813EQS056M
  18. Lee, Y.J. and Moon, D.S. (2014), "A new methodology of the development of seismic fragility curves", Smart Struct. Syst., 14(5), 847-867. https://doi.org/10.12989/sss.2014.14.5.847.
  19. Lee, S., Moon, D.S., Kim, B., Kim, J. and Lee, Y.J. (2021), "Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data", 28(4), 553-566. https://doi.org/10.12989/sss.2021.28.4.553
  20. Li, W., Zhou, J., Xie, K. and Xiong, X. (2008), "Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation", IEEE T. Power Syst., 23(2), 336-343. https://doi.org/10.1109/PES.2009.5275942.
  21. Liu, Y., So, E., Li, Z., Su, G., Gross, L., Li, X. and Wu, L. (2020), "Scenario-based seismic vulnerability and hazard analyses to help direct disaster risk reduction in rural Weinan, China", Int. J. Disaster Risk Reduction, 48, 101577. https://doi.org/10.1016/j.ijdrr.2020.101577.
  22. Martins, L. and Silva, V. (2021), "Development of a fragility and vulnerability model for global seismic risk analyses", Bull. Earthq. Eng., 19(15), 6719-6745. https://doi.org/10.1007/s10518-020-00885-1.
  23. Martins, L., Silva, V., Marques, M., Crowley, H. and Delgado, R. (2016), "Development and assessment of damage-to-loss models for moment-frame reinforced concrete buildings", Earthq. Eng. Struct. D., 45(5), 797-817. https://doi.org/10.1002/eqe.2687.
  24. Massie, A. and Watson, N.R. (2011), "Impact of the Christchurch earthquakes on the electrical power system infrastructure", Bull. New Zealand Soc. Earthq. Eng., 44(4), 425-430. https://doi.org/10.5459/bnzsee.44.4.425-430.
  25. Mousapoor, E., Ghiasi, V. and Madandoust, R. (2020), "Macro modeling of slab-column connections in progressive collapse with post-punching effect", Structures, 27, 837-852. https://doi.org/10.1016/j.istruc.2020.06.025.
  26. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V. and Vigano, D. (2014), "OpenQuake engine: An open hazard (and risk) software for the global earthquake model", Seismol. Res. Lett., 85(3), 692-702. https://doi.org/10.1785/0220130087.
  27. Park, J., Nojima, N. and Reed, D.A. (2006), "Nisqually earthquake electric utility analysis", Earthq. Spectra, 22(2), 491-509. https://doi.org/10.1193/1.2198872.
  28. Pinho, R. (2012), "GEM: a participatory framework for open, state-of-the-art models and tools for earthquake risk assessment", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon.
  29. Pourkeramat, P., Ghiasi, V. and Mohebi, B. (2021), "The effect of post-earthquake fire on the performance of steel moment frames subjected to different ground motion intensities", Int. J. Steel Struct., 21, 1197-1209. https://doi.org/10.1007/s13296-021-00496-9.
  30. Preciado, A., Ramirez-Gaytan, A., Salido-Ruiz, R.A., Caro-Becerra, J.L. and Lujan-Godinez, R. (2015), "Earthquake risk assessment methods of unreinforced masonry structures: Hazard and vulnerability", Earthq. Struct., 9(4), 719-733. https://doi.org/10.12989/eas.2015.9.4.719.
  31. Shinozuka, M., Dong, X., Jin, X. and Cheng, T.C. (2005), "Seismic performance analysis for the ladwp power system", Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, IEEE. https://doi.org/10.1109/TDC.2005.1547165.
  32. Silva, V., Crowley, H., Pagani, M., Monelli, D. and Pinho, R. (2014), "Development of the OpenQuake engine, the Global Earthquake Model's open-source software for seismic risk assessment", Natural Hazards, 72(3), 1409-1427. https://doi.org/10.1007/s11069-013-0618-x.
  33. Silva, V., Crowley, H., Varum, H. and Pinho, R. (2015), "Seismic risk assessment for mainland Portugal", Bull. Earthq. Eng., 13(2), 429-457. https://doi.org/10.1007/s10518-014-9630-0.
  34. TBSDC-2018, Turkish Building Seismic Design Code, Disaster and Emergency Management Authority. Ankara.
  35. Torbol, M. (2015), "Quasi real-time post-earthquake damage assessment of lifeline systems based on available intensity measure maps", Smart Struct. Syst., 16(5), 873-889. https://doi.org/10.12989/sss.2015.16.5.873.
  36. Transpower (2011a), "4 September 2010 Darfield earthquake. Lessons learned", Transpower New Zealand Limited Internal Report, 30 March 2011.
  37. TSC 2007 (2007), Turkish Seismic Code 2007. Ministry of Public Works and Settlement, Ankara, Turkey.
  38. Hancilar, U., El-Hussain, I., Sesetyan, K., Deif, A., Cakti, E., Al-Rawas, G. and Al-Jabri, K. (2018), "Earthquake risk assessment for the building inventory of Muscat, Sultanate of Oman", Nat. Hazards, 93(3), 1419-1434. https://doi.org/10.1007/s11069-018-3357-1.
  39. Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A.B. and Maria, H.S. (2017), "Development of a fragility model for the residential building stock in South America", Earthq. Spectra, 33(2), 581-604. https://doi.org/10.1193/010716EQS005M.
  40. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grunthal, G. and Valensise, G. (2015), "The 2013 European Seismic Hazard Model: Key components and results", Bull. Earthq. Eng., 13, 3553-3596. https://doi.org/10.1007/s10518-015-9795-1.
  41. Yesilyurt, A., Akcan, S.O. and Zulfikar, A.C. (2021), "Rapid power outage estimation for typical electric power systems in Turkey", Challenge, 7(2), 84-92. https://doi.org/10.20528/cjsmec.2021.02.004.
  42. Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H.K., Somerville, P.G., Fukushima, Y. and Fukushima, Y. (2006), "Attenuation relations of strong ground motion in Japan using site classification based on predominant period", Bull. Seismol. Soc. Am., 96(3), 898- 913. https://doi.org/10.1785/0120050122.