• Title/Summary/Keyword: Pozzolanic admixture

Search Result 46, Processing Time 0.019 seconds

The Properties of Concrete Compressive Strength used Rice Straw Ash (소성된 볏짚을 혼입한 콘크리트 압축강도 특성)

  • Kim, Young-Soo;Shin, Sang-Yeop;Jeong, Euy-Chang
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • When manufacturing concrete, several mineral admixture is added to improve the basic physical property and durability and to make economical concrete. Such mineral admixture includes fly ash, granulated blast furnace slag, silica fume, etc., and not only the studies about mixing these mineral admixtures but also the studies for the development of new materials have been steadily in progress. Recently, some researchers have found, as a part of the development of new materials, the rice straw ash can also be used as a pozzolanic material for concrete considering similar chemical properties of rice straw ash to that of rice husk ash. But there has been insufficient amount of study about it. So, this study was to investigate the possibility as mineral admixture of agriculture by-product, by analyzing properties of concretes using rice straw ash with replacement ratio in comparison with other mineral admixture. In order to measure amount of SiO2 of rice straw ash, XRF(X-ray fluorescence) analysis was tested. For the measure pozzolanic reaction of rice straw ash, pH change and color change was tested according to curing day. Also to evaluate properties of concrete using rice straw ash, slump test, air contents test and compressive strength was tested.

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

The Research on Possibility as Mineral Admixture of Agriculture by-product (농업부산물의 혼화재료로써 사용가능성에 관한 연구)

  • Jeong, Euy-Chang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.178-179
    • /
    • 2019
  • The purpose of this study was to investigate the possibility as mineral admixture of agriculture by-product. XRD and XRF analysis were performed on rice straw ashes at various combustion temperatures to identify chemical compositions. Also to evaluate properties of pozzolanic reaction, pH change method was tested.

  • PDF

Study on the Development of High Strength Admixture using Paper Sludge Ash (제지 애쉬를 사용한 고강도 혼화재 개발에 관한 연구)

  • 이재환;서형남;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.87-92
    • /
    • 1998
  • The purpose of this study is to use paper sludge ash as a material in manufacturing high strength admixture. The reactivity of paper sludge ash as iteself is low for the crystallized non-reactive $SiO_2$, but when the $SiO_2$ was removed, the phase component is mainly composed of glass phase which could react with cement hydrates. In this study, we manufactured high strength admixture using separated paper sludge ash, and examined the strength of mortar, spun concrete with and without this high strength admixture in steam curing. The strength of spun concrete with high strength admixture including paper sludge ash was more higher than that of spun concrete without admixture. As a result, it was found that paper sludge ash could be used to a pozzolanic material in manufacturing high strength admixture.

  • PDF

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

The Study on the Pozzolanic Reactivity of Rice Straw Ash (소성볏짚의 포졸란 반응성에 관한 연구)

  • Kim, Sung-Hoon;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.36-37
    • /
    • 2015
  • The purpose of this study is to investigate pozzolanic reactivity of the rice straw ash. This study focused on rice straw ash properties at various burning temperature and duration as a mineral admixture for mortar and concrete, and provide the crystalline state and molecular structure of rice straw ash. X.R.D and N.M.R were performed on rice straw ashes to identify pozzolanic reactivity.

  • PDF

Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh (혼화재 종류 및 활성황토 대체율별 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 최희용;김무한;김문한;황혜주;최성우
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Pozzolan is to improve the strength and the durability of concrete as a result of the pozzolanic reaction, Broadly speaking, pozzolanic materials can be artificial materials, such as slica fume and fly ash, and natural material, such as rice husk ash, clay, volcanic ash, clayish pozzolan. Hwangtoh is a mineral which belongs to a group of matakaolin, especially halloysite, and the main elements is SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$. The purpose of this study is to examine the application of Hwangtoh for the concrete admixtures, the composition of this study is shown as follows. Chapter I is analysis for properties of concrete as the kinds of admixture, and Chapter H is analysis for properties of concrete as the replacement ratio of activated Hwangtoh. As a result of this study, Hwangtoh is found to have high practical use as pozzolanic material, and the pertinent range of replacement ratios of Hwangtoh on cement are 10∼20 %.

A Study on the Capability to Use with Admixture Material of Paper Sludge Ash (제지 슬러지 소각회의 시멘트 혼화 재료로서의 이용 가능성에 관한 연구)

  • 김재진;문경주;노병남;문성필;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.89-92
    • /
    • 1999
  • The purpose of this study is to evaluate the capability to use with cement admixture materials because Paper Sludge Ash consists of Si, Ca and Al which are chief content in Pozzolan. For the derivation of Pozzolanic reaction in Paper Sludge Ash, it is measured compressive strength on cement mortar which is replaced mixing of Paper Sludge Ash and inorganic admixture ; ie, gypsum, lime and slaked lime, regularly. In the result of test, the strength decrease remarkably when cement is only replaced with Paper Sludge Ash, but the strength is almost equal when cement is replaced with Paper Sludge Ash is mixed with inorganic admixture material in proportions of 5~15%. Consequently, It is possible to use Paper Sluge Ash with admixture materials of cement.

  • PDF

Experimental Study on the Resistance of Chloride Infiltration of Concrete Using Activated Hwangtoh Admixture (활성황토를 사용한 콘크리트의 염소이온 침투 저항성에 관한 실험적 연구)

  • 이강우;장종호;최희용;구자술;황혜주;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.781-786
    • /
    • 2001
  • The Salt attack is one of the primary factors that cause the deterioration of durability in steel reinforced concrete structure. And to depreciate the deterioration from the Salt attack in concrete structure, pozzolanic materials are used widely in recent years. In this study, experiments about the resistance of chloride infiltration of concrete according to the replacement rations of Activated Hwangtoh and various pozzolanic materials(silica fume, fly ash, blast furnace slag and non Activated/Activated Hwangtoh) are performed and the results of this study were shown as follows; 1) As the replacement ratios of Activated Hwangtoh were getting higher, the strength of concrete was increased and in case of various pozzolanic materials, strength of Activated Hwangtoh in specimen was better than that of fly ash, blast furnace slag and non Activated Hwangtoh. 2) As the replacement ratios of Activated Hwangtoh were getting higher, the resistance of chloride infiltration of concrete was increased and in case of various pozzolanic materials, silica fume is better than any other pozzolanic materials and Activated Hwangtoh was better than that of fly ash, blast furnace slag and non Activated Hwangtoh.

  • PDF

Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

  • Chore, H.S.;Joshi, M.P.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 2015
  • Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.