• Title/Summary/Keyword: Power-take-off

Search Result 176, Processing Time 0.038 seconds

Test and Evaluation of the Propeller Developed for a Multi-copter with the Take-off Weight of 25 kg (이륙 중량 25 kg급 멀티콥터용 프로펠러 시험 평가)

  • Kang, Hee Jung;Kim, Taejoo;Wee, Seong-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Structural static test and the performance test were conducted to determine whether the propeller developed for a multi-copter with the take-off weight of 25 kg satisfies the design requirement. The result of the structural test revealed that the propeller had a safety margin of 3 or more as the ultimate load and requirement load did not cause the specimen breakage. In the performance test, the propeller generated the hover thrust and maximum thrust of design requirement, and hover efficiency in the operating thrust range was greater than 0.73. Maximum hover efficiency increased by more than 3% compared to the reference propeller and electric power consumption decreased by more than 4% in the operating range. The propeller was found to be successfully developed based on the satisfaction rate of the structural strength requirement and the performance requirement.

The Kinematical Comparative Analysis Between Spring Shoe and General Shoe (기능성 스프링신발과 일반 운동화의 운동학적 비교분석)

  • Lee, Chong-Hoon;Sung, Bong-Ju;Song, Joo-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • The purpose of the study is to examine the effect of the spring shoe through the comparison of spring shoe to general shoe. For this, 12 healthy females in the age from 20 to 30 years participated in the E.M.G. experiment with testing kinematic variables. Results indicated that there was significant differences in angle of ankel between the general and spring shoe. Specifically, the spring shoe showed a bigger angle of take on and a smaller angle of take off in walking than the general shoe. This mesns that the spring shoe does not have a significant effect to produce efficient and smooth walking. In addition, the spring shoes revealed a bigger rear-foot angle than the general shoe in the evaluation of rear-foot control function. This means that the rear-foot control function of the spring shoe is low compared to trhe general shoe. Meanwhile, there is no significant differences in angle of knee and angle of Achilles tendon between both shoes. In an analysis of E.M.G., the significant differences were found in gastrocnemius muscle, anterior tibial musculi, musculi rectus femoris, biceps muscle of thigh between both the general and spring shoe groups by the section. In the case of gastrocnemius muscle, the spring shoe showed a low muscle production of anterior tibial musculi than the general shoe. This is a result from structural nature of the sole of a foot of the spring shoe. The spring shoe performs a rolling movement through slightly large pronation toward front-foot from rear-foot in supprt time before taking-off of toe and the power for this movement is mainly produced from musculi rectus femoris.

Conceptual Design and Aerodynamic Analysis of Double-Seater Tilt-rotor Type PAV (2인승 틸트로터형 PAV 개념설계 및 공력해석)

  • Cho, Yoon-Sung;Kim, Sung-Ji;Baek, Su-Been;Kim, Yeong-Chae;Bae, Geun-Hak;Cho, Eun-Byeol;Yu, Ji-Soo;Hong, Young-Hun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.144-160
    • /
    • 2022
  • Research on urban air mobility (UAM) is being actively conducted as a method of next-generation transportation. eVTOL, an airplane to be used for urban air mobility, is classified into a complex type, a tilt rotor type, a tilt wing type, a tilt duct fan type, and a multicopter type according to the propulsion method. In this study, conceptual design was performed for the next generation eVTOL of the new tilt rotor type in accordance with the existing design requirements. The aerodynamic analysis programs of OpenVSP and XFLR5 were used to perform aerodynamic analysis. The power required for each flight mission stage was calculated, the battery and motor were selected accordingly, and MTOW (Maximum Take-Off Weight) was predicted by estimating the weight of each component.

Conceptual design and sensitivity analysis of a tilt + stopped rotor type eVTOL using motor weight estimation formula and iterative design (모터중량 추정식과 반복 설계를 통한 틸트+정지로터형 eVTOL 개념설계 및 민감도 분석)

  • Ju-heon Lee;Taejong Kim;Seo-yoon Jang;Hui-su Jo;Ho-Yon Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2023
  • In this study, the conceptual design of a tilt + stopped rotor type electric vertical take-off and landing (eVTOL) aircraft was performed using design iteration. Based on Hyundai Motor's S-A1, the mission profile was defined using the concept of urban air mobility (UAM), and configuration design and aerodynamic analysis were performed using OpenVSP and XFLR5 software. After estimating the required power for the designed eVTOL, the required performance of the battery and the maximum take-off weight (MTOW) were calculated. . It was iteratively calculated using Microsoft Excel and Visual Basic Application, and a new electric motor weight estimation formula was derived. Also, the sensitivity analyses of each design variables of an eVTOL was performed using the automated program.

Consumed-Power and Load Characteristics of Potato Harvesting Operation in Dry Field (건답에서 감자수확작업의 소요동력 및 부하특성)

  • Lee, Ju-Yeon;Hwang, Seok-Joon;Nam, Ju-Seok;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • This study analyzed the load and the consumed power characteristics of a potato harvesting operation in a dry field. The potato harvesting operation was performed using an underground crop harvester mounted on an agricultural tractor with a rated engine power of 23.7 kW. The rotational speeds and the torque of the engine output shaft, rear axle, and power take-off (PTO) shaft were measured under various working conditions. The load spectrum and the consumed power were analyzed using the measured data. The results show that the consumed power of the rear axle increased as the working speed increased, while that of the PTO shaft decreased. The consumed power of the engine output shaft showed a similar trend with that of the PTO shaft, but the torque deviation was larger in the load spectrum. The results of previous studies were used to compare herein the consumed power and the load characteristics of the harvesting, rotary, and plow operations in a dry field. PTO and tractive power were highly consumed in the plow and rotary operations, respectively. The consumed power of the PTO shaft and the rear axle in the harvesting operation were 29-41% and 18-23% of the engine power, respectively. Compared to those in the rotary and plow operations, the engine power was relatively evenly distributed to the PTO shaft and rear axle in the harvesting operation.

An Application of Direct Load Control Using Control Logic Based On Load Properties (부하특성별 제어로직을 적용한 직접 부하제어 시스템 활용)

  • Doo, Seog-Bae;Kim, Jeoung-Uk;Kim, Hyeong-Jung;Kim, Hoi-Cheol;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2668-2670
    • /
    • 2004
  • This paper presents an advanced load control method in Direct Load Control(DLC) system. It is important to aggregate a various demand side resource which is surely controllable at the peak power time for a successful DLC system. Because the DLC system use simple On/Off control that may cause a harmful effect on a plant to reduce a peak power load, there are some restriction on deriving a voluntary participation of demand side resource. So it needs a new approach to direct load control method, and this paper describes an advanced load control method using control logic which is based on load properties. This method is easy to take account of a various characteristic of load, it can be use as a dynamic control logic which is good for adaptive control. The suggested control logic method is verified by modeling a control logic for a turbo refrigerator which affects on peak power in summer season.

  • PDF

Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle (압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

Gas Turbine Engine Based Hybrid Propulsion System Modeling and Simulation (가스터빈엔진 기반 하이브리드 추진시스템 모델링 및 시뮬레이션)

  • Lee, Bohwa;Kim, Chuntaek;Jun, Sangook;Huh, Jae-Sung;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • The aircraft targeted in this study is a vertical take-off and landing aircraft with 4 to 5 passengers, and the propulsion system for the aircraft is a distributed hybrid propulsion system that uses a gas turbine engine and a battery pack as the main power source to supply the power required by multiple motors. In this study, a design/analysis platform for a hybrid propulsion system was developed using the MATLAB/Simulink program based on the preliminary design results. Through simulation analysis, the output characteristics and operating range of each power source according to the mission profile were confirmed, and through this, the feasibility of the preliminary design result was confirmed.

Effects of Blood Flow Restriction Exercise on the Alacrity and Balanced Capacity of Female University Students in Their 20s for Health-Care Increase (헬스케어증진을 위한 하지혈류제한운동이 20대 여대생의 순발력과 균형에 미치는 영향)

  • Seo, Tae-Hwa;Kim, Eun-Ho;Jeong, Yeon-Woo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2020
  • This study aims to examine the effects of squat exercise on the vitality and balanced capacity of female university students in their 20s with lower blood flow control. This study selected 40 volunteers from normal adult women in their twenties. Blood flow restriction used Blood Flow Restriction bands (BFR bands). The application method was to put on a blood flow restriction belt in the lower leg of the restricted blood flow area and put 120 mmHg of pressure to limit blood flow while the subject was standing comfortably. It was found that there were statistically significant differences in Height, Maximum concentric power and Take off speed between two groups(p<.05), There was statistically unimportant differences in foot scan between two groups(p>.05). This study found that to find out the changes in balance and alacrity, the experimental and control groups were divided into two groups. In conclusion, there were no significant differences in balance capability, but there were significant differences over time in net power.

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.