• Title/Summary/Keyword: Power-hardware-in-the-loop

Search Result 164, Processing Time 0.031 seconds

Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT (OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Implementation and Test of 3-level NPC VSC-HVDC System using Hardware-in-the-Loop Simulation (Hardware-in-the-Loop Simulation을 이용한 3-레벨 NPC 전압형 HVDC 시스템 구현 및 테스트)

  • Yoo, Hyeong-Jun;Kim, Nam-Dae;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.343-348
    • /
    • 2014
  • Recently, applications of VSC-HVDC systems to power systems are growing because of their control ability of reactive power. Meanwhile, the hardware-in-the-loop simulation (HILS) based on the real-time digital simulator has been applying to develop and test imbedded controllers and systems in the power industry to decrease costs and to save time. In this paper, a 3-level neutral point clamped (NPC) VSC-HVDC system is modeled and the embedded controllers of the NPC VSC-HVDC system are designed. The designed controllers are implemented by TMS320F28335. The TMS320F28335-based controllers of the NPC VSC-HVDC system are tested using the HILS.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Power-hardware-in-the loop simulation of PMSG type wind power generation system (PMSG 타입 풍력 발전시스템의 Power-hardware-in-the loop simulation)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1296-1297
    • /
    • 2011
  • This paper deals with a power-hardware-in-the loop simulation (PHILS) of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) using a real hardware which consists of a motor generator set with motor drive, real time digital simulator (RTDS), and back-to-back converter. A digital signal processor (DSP) controls the back-to-back converter connected between the back-to-back converter and the RTDS. The proposed PHILS can effectively be applied to demonstrate the operational characteristics of PMSG type WPGS under grid connection.

  • PDF

Implementation of Two TMS320F28335 based BESS Controllers for Microgrid and Control Performance Test in the Hardware-in-the-Loop Simulation System (마이크로그리드용 2기의 TMS320F28335 기반 BESS 제어기 구현 및 Hardware-in-the-Loop Simulation 시스템을 이용한 제어 성능 테스트)

  • Kim, Nam-Dae;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.559-564
    • /
    • 2014
  • A microgrid as a small scale power system is operated by the grid-connected mode and islanded mode. It is anticipated that the battery energy storage system (BESS) is able to be applied to the microgrid for stable power control, such as tie-line and smoothing control in the grid-connected mode and voltage and frequency control in the islanded mode. In this paper, a digital signal processor (DSP), Two BESS controllers based on TMS320F28335 of a microgrid are implemented and are tested to show control performance in the hardware-in-the loop simulation (HILS) system.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Low Voltage Ride Through Test for Smart Inverter in Power Hardware in Loop System (전력 HILs를 활용한 스마트 인버터의 LVRT 시험)

  • Sim, Junbo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.101-105
    • /
    • 2021
  • Encouragement of DER from Korean government with several policies boosts DER installation in power system. When the penetration of DER in the grid is getting high, loss of generation with break-away of DER by abnormal grid conditions should be considered, because loss of high generation causes abnormal low frequency and additional operations of protection system. Therefore, KEPCO where is Korean power utility is preparing improvement in regulations for DERs connected to the grid to support abnormal grid conditions such as low and high frequencies or voltages. This is called 'Ride Through' because the requirement is for DER to maintain grid connection during required periods when abnormal grid conditions occur. However, it is not easy to have a test for ride through capability in reality because emulation of abnormal grid conditions is not possible in real power system in operation. Also, it is not easy to have a study on grid effect when ride through capability fails with the same reason. PHILs (Power Hardware In the Loop System) makes it possible to analyze power system and hardware performance at once. Therefore, this paper introduces PHILs test methods and presents verification of ride through capability especially for low voltage grid conditions.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

A Hardware-in-the-loop Platform for Modular Multilevel Converter Simulations

  • Liu, Chongru;Tian, Pengfei;Wang, Yu;Guo, Qi;Lin, Xuehua;Wang, Jiayu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1698-1705
    • /
    • 2016
  • In this paper, a hardware-in-the-loop simulation platform for MMCs is established, which connects a real time digital simulator (RTDS) and a designed MMC controller with optical fiber. In this platform, the converter valves are simulated with a small time step of 2.5 microsecond in the RTDS, and multicore technology is implemented for the controller so that the parallel valve control is distributed between different cores. Therefore, the designed controller can satisfy the requirements of real-time control. The functions of the designed platform and the rationality for the designed controller are verified through experimental tests. The results show that different modulation modes and various control strategies can be implemented in the simulation platform and that each control objective can been tracked accurately and with a fast dynamic response.