• 제목/요약/키워드: Power-factor Correction

검색결과 699건 처리시간 0.022초

A Novel Single Phase Soft Switched PFC Converter

  • Altintas, Nihan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1592-1601
    • /
    • 2014
  • In this study, a novel single phase soft switched power factor correction (PFC) converter is developed with active snubber cell. The active snubber cell provides boost switch both to turn on with zero voltage transition (ZVT) and to turn off with zero current transition (ZCT). As the switching losses in the proposed converter are too low, L and C size can be reduced by increasing the operating frequency. Also, all the semiconductor devices operate with soft switching. There is no additional voltage stress in the boost switch and diode. The proposed converter has a simple structure, low cost and ease of control as well. It has a simple control loop to achieve near unity power factor with the aid of the UC3854. In this study, detailed steady state analysis of the proposed converter is presented and this theoretical analysis is verified by a prototype of 100 kHz and 500 W converter. The measured power factor and efficiency are 0.99 and 97.9% at full load.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

소형 수직축 풍력발전기 풍동실험시 폐쇄율의 영향 (Effect of Blockage Ratio on Wind Tunnel Testing of Small Vertical-Axis Wind Turbines)

  • 정회갑;이승호;권순덕
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of blockage ratio on wind tunnel testing of small vertical-axis wind turbine has been investigated in this study. Height and rotor diameter of the three blades Darrieus vertical axis wind turbine used in present test were 0.4m and 0.35m respectively. We measured the wind speeds and power coefficient at three different wind tunnels where blockage ratio were 3.5%, 13.4% and 24.7% respectively. The test results show that the measured powers have been strongly influenced by blockage ratio, generally increased as the blockage ratio increases. The maximum power at higher blockage ratio has been obtained at relatively high tip speed ratio compared with that at low blockage ratio. The measured power coefficients under high blockage ratio can be improved from proper correction using the simple correction equation based on blockage factor. In present study, the correction error for power coefficient can be less than 5%, however correction effectiveness reveals relatively poor at high blockage ratio and low wind speed.

Single Stage 역률보상을 위한 ZVT 풀 브릿지 부스트 컨버터 (Zero Voltage Transition Full Bridge Boost Converter for Single Stage Power Factor Correction)

  • 송두익;권순걸;조정구;백주원;하성운;김종수;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.351-354
    • /
    • 1996
  • A zero-voltage-transition(ZVT) full bridge (FB) boost converter for single stage power factor correction (PFC) in distributed power system is proposed. A simple auxiliary circuit provides zero-voltage-switching(ZVS) condition to all semiconductor devices without imposing additional voltage and current stresses and loss of PWM capability. The proposed boost converter provides both input power factor correction and direct conversion from $110{\sim}220VAC$ line to 300VDC bus with single power stage. Operational principle, analysis of the proposed converter are described and verified by computer simulation and experimental results from a 1.5 kW, 80 kHz laboratory prototype.

  • PDF

$90-265V_{rms}$ 입력범위를 갖는 단일전력단 역률개선 컨버터 (A Single-Stage Power Factor Correction Converter far $90-265V_{rms}$ Line Applications)

  • 이준영;박희정;구관본;윤명중
    • 전력전자학회논문지
    • /
    • 제5권5호
    • /
    • pp.508-514
    • /
    • 2000
  • 본 논문에서는 역률개선용 단일 스위치 부스트 플라이백 결합형 ZCS quasi-resonant converter(QRC)를 제안한다. 제안된 컨버터는 입력전류를 불연속 모드로 동작시켜 역률을 개선하며 입력전류의 zero-crossing-point에서의 왜곡을 개선함으로써 고조파를 감소시켜 역률을 향상시켰으며 좋은 출력전압의 regulation 성능을 가지고 있다. 그리고 체계적인 설계를 위하여 설계식을 제안하였으며 제안된 설계식을 통하여 프로토타입 컨버터를 설계하였다. 실험결과 효율은 약 86%, 역률은 약 0.985이상을 얻었다. 따라서 본 컨버터는 스위칭 주파수가 수백kHz이상이고 높은 regulation성능을 요구하는 낮은 전압의 소용량 컨버터에 적합하다.

  • PDF

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

우수한 공통 모드 노이즈 특성을 가진 브릿지 다이오드가 없는 고효율 PFC 컨버터 (High Efficiency Bridgeless Power Factor Correction Converter With Improved Common Mode Noise Characteristics)

  • 장효서;이주영;김문영;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.85-91
    • /
    • 2022
  • This study proposes a high efficiency bridgeless Power Factor Correction (PFC) converter with improved common mode noise characteristics. Conventional PFC has limitations due to low efficiency and enlarged heat sink from considerable conduction loss of bridge diode. By applying a Common Mode (CM) coupled inductor, the proposed bridgeless PFC converter generates less conduction loss as only a small magnetizing current of the CM coupled inductor flows through the input diode, thereby reducing or removing heat sink. The input diode is alternately conducted every half cycle of 60 Hz AC input voltage while a negative node of AC input voltage is always connected to the ground, thus improving common mode noise characteristics. With the aim to improve switching loss and reverse recovery of output diode, the proposed circuit employs Critical Conduction Mode (CrM) operation and it features a simple Zero Current Detection (ZCD) circuit for the CrM. In addition, the input current sensing is possible with the shunt resistor instead of the expensive current sensor. Experimental results through 480 W prototype are presented to verify the validity of the proposed circuit.

Assessment of environmental fatigue in nuclear power plants: A comparative analysis of the effects of plasticity correction

  • Tae-Song Han;Hee-Jin Kim;Nam-Su Huh;Hyeong-Yeon Lee;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3764-3774
    • /
    • 2024
  • In accordance with Regulatory Guide 1.207, Rev.1, fatigue assessments must be conducted considering the influence of primary coolant environment in nuclear reactors. Environmental fatigue, resulting from corrosion in the primary coolant, is evaluated in air fatigue life assessments through the application of an environmental fatigue correction factor. This environmental fatigue correction factor depends on sulfur content, operating temperature, dissolved oxygen, and strain rate. It remains constant for sulfur content, operating temperature, and dissolved oxygen, while strain rate introduces potential errors based on the analysis method. The current fatigue evaluation procedure for air, following ASME B&PV Code Sec.III, NB-3200, employs elastic analysis with a simplified elastic-plastic correction factor(Ke). However, Ke factor is considered excessively conservative, prompting less conservative alternatives proposed by JSME, RCC-M, ASME Code Case N-779. This study applied both ASME Ke and JSME Ke for fatigue evaluations considering environmental effects. Additionally, fatigue assessments accounting for elastic-plastic effects were conducted using Neuber and Glinka methods, compared with actual experiments. The analysis systematically examined changes in fatigue life and the environmental fatigue correction factor due to plastic effects in environmental fatigue evaluations.

인버터에어컨에 능동역률개선회로 적용에 관한 연구 (A Study On The Application Of Active Power Factor Correction Circuit In Inverter Airconditioner)

  • 김태덕;배영돈;박윤서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.306-308
    • /
    • 1996
  • The demands of minimizing the reactive power and reducing the current harmonics are increasing nowdays. The inverter airconditioner needs high inductive power and it operates with wide load ranges. Conventionally, an huge LC passive filter is used in airconditioner to improve the power factor and to reduce current harmonics which doesn't give good results. In this paper, a design of active power factor correction(APFC)circuit for inverter airconditioner is described. To improve the P.F and reduce the current THD, average current controlled APFC is designed and tested. The problems of APFC implementation, their solution and testing results are described.

  • PDF

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.