• Title/Summary/Keyword: Power-To-Gas

Search Result 4,282, Processing Time 0.036 seconds

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Economic Feasibility Analysis of 100-MW Power-to-Gas System (100 MW급 Power-to-Gas 시스템의 사전 경제성 분석)

  • Ko, Areum;Park, Sung-Ho;Kim, Suhyun
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2020
  • According to the Korean Renewable Energy 3020 Implementation Plan, the installation capacity of renewable energy is expected to increase whereas technology for storing excess electricity and stabilizing the power supply of renewable energy sources is extremely required. Power-to-Gas is one of energy storage technologies where electricity is converted into gas fuel such as hydrogen and methane. Basically, Power-to-Gas system could be effectively utilized to store excess electricity generated by an imbalance between supply and demand. In this study, the economic feasibility analysis of Power-to-Gas reflecting the domestic situation was carried out. Total revenue requirement method was utilized to estimate the levelized cost of hydrogen. Validation on the economic analysis method in this study was conducted by comparison of the result, which is published by the International Energy Agency. The levelized cost of hydrogen of a 100-MW Power-to-Gas system reflecting the current economic status in Korea is 8,344 won kg-1. The sensitivity analysis was carried out, applying the main analysis economic factors such as electricity cost, electrolyser cost, and operating year. Based on the sensitivity analysis, the conditions for economic feasibility were suggested by comparing the cost of producing hydrogen using renewable energy with the cost of producing natural gas reformed hydrogen with carbon capture and storage.

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

Effects of Hydrogen in SNG on Gas Turbine Combustion Characteristics (합성천연가스의 수소함량 변화에 따른 가스터빈 연소특성 평가)

  • Park, Se-Ik;Kim, Ui-Sik;Chung, Jae-Hwa;Hong, Jin-Pyo;Kim, Sung-Chul;Cha, Dong-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • Increasing demand for natural gas and higher natural gas prices in the recent decades have led many people to pursue unconventional methods of natural gas production. POSCO-Gwangyang synthetic natural gas (SNG) project was launched in 2010. As the market price of natural gas goes up, the increase of its price gets more sensitive due to the high cost of transportation and liquefaction. This project can make the SNG economically viable. In parallel with this project, KEPCO (Korea Electric Power Corporation) joined in launching the SNG Quality Standard Bureau along with KOGAS (Korea Gas Corporation), POSCO and so on. KEPCO Research Institute is in charge of SNG fueled gas turbine combustion test. In this research, several combustion tests were conducted to find out the effect of hydrogen contents in SNG on gas turbine combustion. The hydrogen in synthetic natural gas did not affect on gas turbine combustion characteristics which are turbine inlet temperature including pattern factor and emission performance. However, flame stable region in ${\Phi}$-Air flow rate map was shifted to the lean condition due to autocatalytic effect of hydrogen.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Performance Analysis of a Gas Turbine for Power Generation using Syngas as a Fuel (Syngas및 수소를 연료로 사용하는 발전용 가스터빈 성능해석)

  • Lee, J.J.;Cha, K.S.;Sohn, J.L.;Kim, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3241-3246
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with three different fuels, i.e., natural gas ($CH_4$), syngas and hydrogen. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics.

  • PDF

Development of a Gas Sensor System with Built-in Low-power Signal Extraction Technique (저전력 신호 추출 기법이 내장된 가스 센서 시스템 개발)

  • Jang-Su Hyeon;Hyeon-June Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.105-109
    • /
    • 2023
  • In this study, we present a power-efficient driving method for gas sensor systems based on the analysis of input signal characteristics. The analysis of the gas sensor output signal characteristics in the frequency domain shows that most of the signal portions are distributed in a relatively low frequency region when extracting the gas sensor signal, which can lead to further performance improvement of the gas sensor system. Therefore, the proposed gas signal extracting technique changes the operating frequency of the read-out circuit based on the frequency characteristics of the output signal of the gas sensor, resulting in a reduction of power consumption at the whole system level. The proposed sensing technique, which can be applied to a general-purpose commercial gas sensor system, was implemented in a printed circuit board (PCB) to verify its effectiveness at the commercial level.