• 제목/요약/키워드: Power-Split mode

검색결과 48건 처리시간 0.029초

동력순환형과 동력분류형을 구현 가능한 복합형 무단변속기 (Compound CVT realizing Power Circulation Mode and Power Split Mode)

  • 최상훈;김연수
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.96-103
    • /
    • 2005
  • We designed the compound CVT(Continuously Variable Transmissions) by combining power circulation mode and power split mode, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU(Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments for efficiency, speed ratio, power flow, and power transmission ratio. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

ANALYSIS OF PLANETARY GEAR HYBRID POWERTRAIN SYSTEM PART 1: INPUT SPLIT SYSTEM

  • Yang, H.;Cho, S.;Kim, N.;Lim, W.;Cha, S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.771-780
    • /
    • 2007
  • In recent studies, various types of multi mode electric variable transmissions of hybrid electric vehicles have been proposed. Multi mode electric variable transmission consists of two or more different types of planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally, the power flows can be classified into three different types such as input split, output split and compound split. In this study, we analyzed power transmission characteristics of the possible six input split systems, and found the suitable system for single or multi mode hybrid powertrain. The input split system used in PRIUS is identified as a best system for single mode, and moreover we identified some suitable systems for dual mode.

출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석 (Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

2K-HI 형식 복합형 무단변속기의 성능실험 (Performance Analysis of Compound CVTs with a 2K-HI)

  • 박재민;김연수;이상희;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1345-1348
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

Design and Performance Verification of Compound CVTs with 2K-H I type Differential Gear

  • Kim Yeon-Su;Park Jae-Min;Choi Sang-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.770-781
    • /
    • 2006
  • This paper defined design constraints for the compound CVTs (continuously variable trans-missions) by combining power-circulation-mode CVTs and power-split-mode CVTs, which were proposed for connecting 2K-H I-type differential gear to V-belt-type CVU (Continuously Variable Unit). The design constraints are the necessary and sufficient conditions to avoid geometrical interferences among elements in the compound CVTs, and to guarantee smooth assembly between the power-circulation-mode CVT and power-split-mode CVT Two com-pound CVTs were designed and manufactured in accordance with the design constraints. With these compound CVTs, theoretical analysis and performance experiments were conducted. The results showed that the design constraints were valid and effective design method, and that the designed compound CVTs had the improved performance.

2K-H II 형식 복합형 무단변속기의 효율실험 (Performance Efficiency of Compound CVTs with a 2K-H II)

  • 박재민;김연수;이상희;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.670-673
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H II differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션 (Operation Modes of a Power Split Hybrid Electric Vehicle)

  • 안국현;조성태;임원식;박영일;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.547-550
    • /
    • 2006
  • The power split hybrid power train is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Experimental Study on the Input Coupled type CVT combined a Differential Gear and V-Belt type CVU

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.43-55
    • /
    • 2001
  • A continuously variable transmission(CVT) mechanism composed of one differential gear unit and one continuously variable unit(CVU) can be classified according to the coupling of CVU and the direction of power flows. The mechanism has many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range and generation of geared neutral. The CVT mechanism considered here is the input coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type CVU. One shaft of the CVU is connected directly to the input shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations(speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Some useful comparisons between theoretical analysis and experimental results are presented. General properties also are discussed, which connect following power flow modes : (a) power circulation mode; (b) power split mode.

  • PDF

동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션 (Operation Modes of a Power Split Hybrid Electric Vehicle)

  • 안국현;조성태;임원식;박영일;이장무
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.23-27
    • /
    • 2006
  • The power split hybrid powertrain is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발 (Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive)

  • 김연수;최상훈
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.