• Title/Summary/Keyword: Power-Hardware-In-Loop-Simulator

Search Result 52, Processing Time 0.033 seconds

Development of PV-Power-Hardware-In-Loop Simulator with Realtime to Improve the Performance of the Distributed PV Inverter (분산전원형 PV 인버터 성능 개선을 위한 실시간 처리기반의 PV-Power-Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Kim, Byungki;Ryu, Kung-Sang;Lee, Gwang-Se;Jang, Moon-Seok;Ko, Hee-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • As the global warming threats to humanity, renewable energy is considered the key solution to overcome the climate change. In this circumstance, distributed PV systems are being expanded significantly its market share in the renewable energy industry. The performance of inverter is the most important component at PV system and numerous researches are focusing on it. In order to improve the inverter, PV simulator is an essential device to experiment under various load and conditions. This paper proposes the PV Power-Hardware-In-Loop simulator (PHILS) with real-time processing converted electrical and mathematical models to improve computation speed. Single-diode PV model is used in MATLAB/SIMULINK for the PV PHILS to boosting computation speed and dynamic model accuracy. In addition, control algorithms for sub-components such as DC amplifier, measurement device and several interface functions are implemented in the model. The proposed PV PHILS is validated by means of experiments with commercial PV module parameters.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Kim, Do-Hee;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang -bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

A study on advanced PV operation algorithm to improve the PV Power-Hardware-In-Loop Simulator (PV PHIL-시뮬레이터의 성능 개선을 위한 최적의 운영제어 알고리즘 연구)

  • Kim, Dae-Jin;Kim, Byungki;Ko, Hee-Sang;Jang, Moon-Seok;Ryu, Kyung-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.444-453
    • /
    • 2017
  • This paper proposes an operational algorithm for a Photovoltaic Power-Hardware-In-Loop Simulator that is designed to improve the control algorithm and reliability of the PV Inverter. There was an instability problem in the PV PHILS with the conventional algorithm when it was connected tothe PV inverter. Initially, a real-time based computing unit with mathematical modeling of the PV array is implemented and a DC amplifier and an isolated device for DC power measurement are integrated. Several experiments were performed based on theabove concept undercertain conditions, which showed that the proposed algorithm is more effective for the PV characteristic test and grid evaluation test than the conventional method.

Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator

  • Kim, Gyeong-Hun;Kim, Jong-Yul;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Eung-Sang;Lee, Ju-Han;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1489-1494
    • /
    • 2014
  • A hardware-in-the-loop simulation (HILS) method for a wind farm controller using a real time digital simulator (RTDS) is presented, and performance of the wind farm controller is analyzed. A 100 MW wind farm which includes 5 MW wind power generation systems (WPGS) is modeled and analyzed in RSCAD/RTDS. The wind farm controller is implemented by using a computer, which is connected to the RTDS through transmission control protocol/internet protocol (TCP/IP). The HILS results show the active power and power factor of the wind farm, which are controlled by the wind farm controller. The proposed HILS method in this paper can be effectively utilized to validate and test a wind farm controller under the environment in practice without a real wind farm.

Implementation and Test of 3-level NPC VSC-HVDC System using Hardware-in-the-Loop Simulation (Hardware-in-the-Loop Simulation을 이용한 3-레벨 NPC 전압형 HVDC 시스템 구현 및 테스트)

  • Yoo, Hyeong-Jun;Kim, Nam-Dae;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.343-348
    • /
    • 2014
  • Recently, applications of VSC-HVDC systems to power systems are growing because of their control ability of reactive power. Meanwhile, the hardware-in-the-loop simulation (HILS) based on the real-time digital simulator has been applying to develop and test imbedded controllers and systems in the power industry to decrease costs and to save time. In this paper, a 3-level neutral point clamped (NPC) VSC-HVDC system is modeled and the embedded controllers of the NPC VSC-HVDC system are designed. The designed controllers are implemented by TMS320F28335. The TMS320F28335-based controllers of the NPC VSC-HVDC system are tested using the HILS.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Power-hardware-in-the loop simulation of PMSG type wind power generation system (PMSG 타입 풍력 발전시스템의 Power-hardware-in-the loop simulation)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1296-1297
    • /
    • 2011
  • This paper deals with a power-hardware-in-the loop simulation (PHILS) of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) using a real hardware which consists of a motor generator set with motor drive, real time digital simulator (RTDS), and back-to-back converter. A digital signal processor (DSP) controls the back-to-back converter connected between the back-to-back converter and the RTDS. The proposed PHILS can effectively be applied to demonstrate the operational characteristics of PMSG type WPGS under grid connection.

  • PDF

The Performance Test of Digital PSS Using KEPCO Enhanced Pourer System Simulator(KEPS) (실시간 대규모 전력계통 해석용 시뮬레이터(KEPS)를 이용한 국산 디지털 PSS의 성능 시험)

  • 신정훈;김태균;추진부;백영식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.611-623
    • /
    • 2002
  • This paper introduce the real time digital simulator which is located in Korea Electric Power Research Institute. This paper also describes the methodology for the performance test of the PSS using KEPS. This test is to get a high degree of the confidence of the developed PSS before it is installed into the real power system. This has been performed in the form of closed-loop tests in which Simulator and PSS are connected and signals come and back interactively. Many tests have successfully done using KEPS which consists of 26 RTDS racks, under the large-scale power system. The simulated reduced KEPCO power system contains 88 generators and 295 buses. Through the AVR step, three phase fault and active power variation test, the effectiveness of developed PSS has been proved. This paper also presents the overview of KEPS and hardware of protype PSS.

Test Platform Development of Vessel's Power Management System Using Hardware-in-the-Loop Simulation Technique

  • Lee, Sang-Jung;Kwak, Sang-Kyu;Kim, Sang-Hyun;Jeon, Hyung-Jun;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2298-2306
    • /
    • 2017
  • A PMS (Power Management System) controls vessel's power systems to improve the system efficiency and to protect a blackout condition. The PMS should be developed with considering the type and the capacity of the vessel's power system. It is necessary to test the PMS functions developed for vessel's safe operations under various sailing situations. Therefore, the function tests in cooperation with practical power systems are required in the PMS development. In this paper, a hardware-in-the-loop (HIL) simulator is developed for the purposes of the PMS function tests. The HIL simulator can be more cost-effective, more time-saved, easier to reproduce, and safer beyond the normal operating range than conventional off-line simulators, especially at early stages in development processes or during fault tests. Vessel's power system model is developed by using a MATLAB/SIMULINK software and by communicating between an OPAL-RT's OP5600 simulator. The PMS uses a Modbus communication protocol implemented using LabVIEW software. Representative tests of the PMS functions are performed to verify the validity of the proposed HIL-based test platform.