• Title/Summary/Keyword: Power trading Contracts

Search Result 5, Processing Time 0.021 seconds

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Study on Optimal Trading Method of REC by Solar Power Generation (태양광 REC 최적 거래 방식에 관한 연구)

  • Nam, Youngsik;Lee, Jaehyung
    • Environmental and Resource Economics Review
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2020
  • While the renewable energy portfolio standard (RPS) is in place to expand the scale of renewable energy generation, the power producer can obtain the renewable energy credit (REC) and use it as an incentive to operate the facility. RECs secured by solar power generation can be traded through spot market or fixed price contracts, and, in the spot market trading, power producers are exposed to the uncertainty of REC spot price. In this study, real option analysis is conducted to analyze the optimal threshold of REC spot price for the conversion of REC trading method by power producer considering the uncertainty of REC spot price. We calculated the optimal threshold of REC spot price that can convert the trading method of REC from spot market to fixed price contract. In conclusion, the spot market trading is a rational trading method when considering the uncertainty of REC price, but the fixed price bidding is a rational trading method when not considering the uncertainty of REC price.

Assessment of Transmission Losses with The 7th Basic Plan of Long-term Electricity Supply and Demand (7차 전력수급계획에 따른 송전계통 손실 분석에 관한 연구)

  • Kim, Sung-Yul;Lee, Yeo-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • In recent years, decentralized power have been increasing due to environmental problems, liberalization of electricity markets and technological developments. These changes have led to the evolution of power generation, transmission, and distribution into discrete sectors and the division of integrated power systems. Therefore, studies are underway to efficiently supply power and reduce losses to each sector's demand. This is a major concern for system planners and operators, as it accounts for a relatively high proportion of total power, with a transmission and distribution loss of 4-6%. Therefore, this paper analyzes the status of loss management based on the current transmission and distribution loss rate of each country and transmission loss management cases of each national power company, and proposes a loss rate prediction algorithm according to the long-term transmission system plan. The proposed algorithm predicts the demand-based long-term evolution and the loss rate of the grid to which the transmission plan is applied.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Optimal LNG Procurement Policy in a Spot Market Using Dynamic Programming (동적 계획법을 이용한 LNG 현물시장에서의 포트폴리오 구성방법)

  • Ryu, Jong-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • Among many energy resources, natural gas has recently received a remarkable amount of attention, particularly from the electrical generation industry. This is in part due to increasing shale gas production, providing an environment-friendly fossil fuel, and high risk of nuclear power. Because South Korea, the world's second largest LNG importing nation after Japan, has no international natural gas pipelines and relies on imports in the form of LNG, the natural gas has been traditionally procured by long term LNG contracts at relatively high price. Thus, there is a need of developing an Asian LNG trading hub, where LNG can be traded at more competitive spot prices. In a natural gas spot market, the amount of natural gas to be bought should be carefully determined considering a limited storage capacity and future pricing dynamics. In this work, the problem to find the optimal amount of natural gas in a spot market is formulated as a Markov decision process (MDP) in risk neutral environment and the optimal base stock policy which depends on a stage and price is established. Taking into account price and demand uncertainties, the basestock target levels are simply approximated from dynamic programming. The simulation results show that the basestock policy can be one of effective ways for procurement of LNG in a spot market.