• Title/Summary/Keyword: Power to gas

Search Result 4,296, Processing Time 0.036 seconds

Field Cooling Tests of Paddy Stored in Steel Bins with a Grain Cooler (곡물냉각기를 이용한 철제 원형빈에서 벼 냉각)

  • 김의웅;김동철
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • Two field cooling tests were conducted to evaluate the cooling characteristic of paddy with a prototype grain cooler. The first test was carried out during summer season in a steel bin with 180.3ton of paddy at Sunchon. And the second test was carried out during harvesting season in a steel bin with 272.2ton of paddy at Ulsan. At the first test, initial paddy temperature of 23.6$^{\circ}C$ was dropped to 14$^{\circ}C$, and initial moisture content of 19.9% was dropped to 19.3% after 52.5 hours of cooling. At the second test, initial paddy temperature of 16.1$^{\circ}C$ dropped to 5.5$^{\circ}C$ after 78.0 hours of cooling. And, at the first test, the average air flow rates of chilled air leaving the grain cooler and penetrating the grain layer were 77.5 ㎥/min and 42.5 ㎥/min, respectively. To prevent leakage of chilled air from plenum chamber of steel bin, which was about 45% of the average air flow rates of chilled air leaving the grain cooler, a proper method was required. The average total power consumption at the first test during summer was 22.1 ㎾ with control of fan damper. At the second test, it was 17.4 ㎾ due to controlling the capacity of compressor with unloading solenoid valve and changing the flow rates of hot refrigerant gas flowing into evaporator and reheater from compressor, resulting in 27% reduction of energy consumption.

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

An Analysis of Single-person Households' Expenditure Pattern (1인가구의 품목별 소비지출 분석)

  • Park, Moon-Soo;Chong, Hogun;Kim, Hwa-Nyeon;Koh, Dae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.987-994
    • /
    • 2015
  • This study examines how single-person household expenditure patterns are different with respect to age and income groups using Tobit model. The expenditure data of the national household survey from 2006 to 2012 were used. The results show that income elasticities of all items are greater than 1 except for food & beverage, housing, water, electricity & gas, and Communication. Income elasticities are significantly different among consuming items. Additionally the income elasticities are also different between various age and income groups of single-person households. Therefore governments and businesses have to take this into account when devising their policies or strategies regarding single-person households. Especially, businesses need to adopt a strategy targeted at single-person households with high income and buying power such as unmarried professional people. As the number of single-person household increases the proportion of expenditures on necessities such as beverage, food, and energy is expected to decrease while that on services increases. Consequently policy responses are required to prepare for the expansion of service industries such as health, hospital, and housekeeping services.

Discrimination of the geographical origin of commercial sesame oils using fatty acids composition combined with linear discriminant analysis (지방산 조성과 선형판별분석을 활용한 유통판매 참기름의 원산지 판별)

  • Kim, Nam-Hoon;Choi, Chae-man;Lee, Young-Ju;Kim, Na-Young;Hong, Mi-Sun;Yu, In-Sil
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • In this study, the fatty acid (FA) composition of commercial sesame oils (n = 62) was investigated using gas chromatography with flame ionization detector (GC-FID). Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were applied to the chromatographic data of the FAs to discriminate the geographical origin of sesame oils. A statistically significant difference was observed in the content of C16:0, C18:0, C18:1, and C18:2 between domestic and imported sesame oils. A satisfactory recovery rate of 82.8-100.2 % was achieved for C16:0, C18:0, C18:1, C18:2, and C18:3. The correlation of C16:0, C18:1, and C18:2 in domestic sesame oils showed opposite trends compared to imported oils. The PCA plot demonstrated that sesame oils were clustered in distinct groups according to their origin. LDA was used to predict sesame oil samples in one of the two groups. C16:0 (Wilks λ = 0.361) and C18:1 (Wilks λ = 0.637) demonstrated the highest discriminant power for classifying the origin of the samples. The correct prediction rates were 88.9 % and 100 % for the domestic and imported samples, respectively. Further, 60 of the 62 sesame oil samples (96.8 %) were correctly classified, indicating that this approach can be used as a valuable tool to predict and classify the geographical origin of sesame oils.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

An Assessment of Technological Competitiveness in Core Products of Foreign Design & Construction markets (해외 유망 건설상품의 기술 경쟁력 평가)

  • Choi, Seok-In;Kim, Sang-Bum;Lee, Young-Whan;Kim, Woo-Young;Jang, Hyoun-Seung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, surveys and interviews are used to evaluate technological competitiveness of each product with respect to that of foreign leading firms, for seven leading domestic construction products which have been determined to have competitive edge in offshore markets, Such evaluation provides a more in depth study than previously conducted research, and is meaningful in that corporate level, rather than industry level, perspective is projected. Major findings of such evaluations are the following. First, as expected, it has been evaluated that domestic technological competitiveness in desalination plant and power plant has reached the point where it can compete with foreign leading firms. Moreover, a noteworthy result of the evaluation is that development program sector, including urban development of satellite cities, has reached considerable level of competitiveness in offshore market. In the case of the development market, domestic firms have accumulated sufficient experience in domestic market and engineering technology is not a decisive factor as in plant sector, and these factors lead to such an evaluation. Second, in the cases of gas, oil refinery and petro-chemical plants, domestic products' technological competitiveness that can contest in offshore market is still centered around production and construction. On the other hand, there are still weaknesses in license technology and basic design capabilities, which constitute the "value added" area. Third, skyscrapers, a promising product in offshore construction market and a product group which domestic firms have much performance record and projects in progress both in domestic and offshore markets, are considered. While direct comparison between skyscrapers and plant sector is not feasible, with the exception of production and construction, overall domestic capability in this sector has been assessed to be the lowest amongst those products that were surveyed. Fourth, it has been indicated that competitiveness is relatively higher in common technology than in key technology. In project management capability, it has been assessed that there are weaknesses in procedure document area. Also, a characteristic is the point that low overall assessments have been given across all product groups for corporate and management areas, not technological areas. Especially, financing, contracting/claim, risk management and investment on research and development received low evaluations. Fifth, it has been assessed that overall corporate and governmental supports are weak. This result is especially evident for corporate management and support areas across all product groups surveyed.

A Study on Effect of a Combined Plasma EGR System upon Soot CO and $CO_2$ Emissions in Turbo Intercooler Common-rail Diesel Engines (터보 인터쿨러 커먼레일 디젤기관의 매연, CO 및 $CO_2$ 배출물에 미치는 플라즈마 EGR 조합시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Ku, Young-Jin;Lee, Bong-Sub;Youn, Il-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. In this study, the characteristics of soot, CO and $CO_2$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR and non-thermal plasma reactor system are used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce soot and THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that soot emissions with increasing EGR rate are increased, but are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load. Results also show that CO and $CO_2$ emissions are increased as EGR rate is elevated, and CO emissions are increased, but $CO_2$ emissions are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load.

A Study on the Development of Multifuntional Real-Time Inclination and Azimuth Measurement System (다용도 실시간 경사각과 방위각 연속 측정 시스템 개발연구)

  • Kim, Gyuhyun;Cho, Sung-Ho;Jung, Hyun-Key;Lee, Hyosun;Son, Jeong-Sul
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.588-601
    • /
    • 2013
  • In geophysics and geophysical exploration fields, we can use information about inclination and azimuth in various ways. These include borehole deviation logging for inversion process, real-time data acquisition system, geophysical monitoring system, and so on. This type of information is also necessarily used in the directional drilling of shale gas fields. We thus need to develop a subminiature, low-powered, multi-functional inclination and azimuth measurement system for geophysical exploration fields. In this paper, to develop real-time measurement system, we adopt the high performance low power Micro Control Unit (made with state-of-the-art Complementary Metal Oxide Semiconductor technology) and newly released Micro Electro Mechanical Systems Attitude Heading Reference System sensors. We present test results on the development of a multifunctional real-time inclination and azimuth measurement system. The developed system has an ultra-slim body so as to be installed in 42mm sonde. Also, this system allows us to acquire data in real-time and to easily expand its application by synchronizing with a depth encoder or Differential Global Positioning System.

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.