• Title/Summary/Keyword: Power system control

Search Result 10,088, Processing Time 0.045 seconds

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

New Control Strategy for Three-Phase Grid-Connected LCL Inverters without a Phase-Locked Loop

  • Zhou, Lin;Yang, Ming;Liu, Qiang;Guo, Ke
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.487-496
    • /
    • 2013
  • The three-phase synchronous reference frame phase-locked loop (SRF-PLL) is widely used for synchronization applications in power systems. In this paper, a new control strategy for three-phase grid-connected LCL inverters without a PLL is presented. According to the new strategy, a current reference can be generated by using the instantaneous power control scheme and the proposed positive-sequence voltage detector. Through theoretical analysis, it is indicated that a high-quality grid current can be produced by introducing the new control strategy. In addition, a kind of independent control for reactive power can be achieved under unbalanced and distorted grid conditions. Finally, the excellent performance of the proposed control strategy is validated by means of simulation and experimental results.

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Dual-Loop Power Control for Single-Phase Grid-Connected Converters with LCL Filter

  • Peng, Shuangjian;Luo, An;Chen, Yandong;Lv, Zhipeng
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.456-463
    • /
    • 2011
  • Grid-connected converters have widely adopted LCL filters to acquire high harmonic suppression. However, the LCL filter increases the system order so that the design of the system stability would be complicated. Recently, sole-loop control strategies have been used for grid-connected converters with L or LC filters. But if the sole-loop control is directly transplanted to grid-connected converters with LCL filters, the systems may be unstable. This paper presents a novel dual-loop power control strategy composed of a power outer loop and a current inner loop. The outer loop regulates the grid-connected power. The inner loop improves the system stability margin and suppresses the resonant peak caused by the LCL filter. To obtain the control variables, a single-phase current detection is proposed based on PQ theory. The system transfer function is derived in detail and the influence of control gains on the system stability is analyzed with the root locus. Simulation and experimental results demonstrate the feasibility of the proposed control.

Decentralized Neural Network-based Excitation Control of Large-scale Power Systems

  • Liu, Wenxin;Sarangapani, Jagannathan;Venayagamoorthy, Ganesh K.;Liu, Li;Wunsch II, Donald C.;Crow, Mariesa L.;Cartes, David A.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.526-538
    • /
    • 2007
  • This paper presents a neural network based decentralized excitation controller design for large-scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem control activities are guaranteed through rigorous stability analysis. Neural networks in the controller design are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded. To evaluate its performance, the proposed controller design is compared with conventional controllers optimized using particle swarm optimization. Simulations with a three-machine power system under different disturbances demonstrate the effectiveness of the proposed controller design.

Establishment of Cyber Security Countermeasures amenable to the Structure of Power Monitoring & Control Systems (전력계통 제어시스템 구조에 따른 사이버 보안대책 수립)

  • Woo, Pil Sung;Kim, Balho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1577-1586
    • /
    • 2018
  • The emergence of the Smart Grid is an integrated solution for the next generation power system that combines IT technology in the power system to create optimal energy utilization and various services. However, these convergence technologies (power systems and information communications) are not only improving the related technologies but also producing various problems especially exposure to cyber risk. In particular, the intelligent power grid has security vulnerabilities through real-time information sharing among various organically linked systems, and it is more complicated than the cyber risk problem in the existing IT field and is directly connected to national disaster accidents. Therefore, in order to construct and operate a more stable smart grid, this paper analyzes the system of power system control system in Korea, and proposes a cyber security element definition and a countermeasure establishment method of power monitoring & control systems based on security standards of smart grid (No. SPS-SGSF-121-1-1).

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

A System on the Digital-Control Algorithm of a High-Speed PWM Power System for MRI System (고속 PWM을 이용한 MRI 용 전원의 디지털 제어 알고리즘에 관한 연구)

  • Heo, Hyun-Gu;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.235-240
    • /
    • 2000
  • In this paper a digital-control algorithm of a power system suing a high-speed PWM for a MRI system is proposed. The MRI system requires an elaborate ladder-shaped current source. And the load of current source is the inductance with resistance. For the inductive load a voltage output of the power system has hi호 frequency components. Therefore this system requires high-speed PWM above 80KHz, A high speed PWM control algorithm which satisfies those conditions is designed. Finally the performance of proposed control algorithm is shown by simulation.

  • PDF

A Study on the Dynamic Analysis and Control Algorithm for a Motor Driven Power Steering System

  • Yun, Seokchan;Han, Changsoo;Wuh, Durkhyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The power steering system for vehicles is becoming essential for supporting the steering efforts of the drivers, especially for the parking lot maneuver Although hydraulic power steering has been widely used for years, its efficiency is not high enough. The problems associated with a hydraulic howe. steering system can be solved by a motor driven power steering (MDPS) system. In this study, a dynamic model and a control algorithm for the ball screw type of MDPS system have been derived and analyzed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, two derivative gains are added to the conventional power boosting control algorithm. Through simulations, the effects of the control gain on the steering angle gain were verified in the frequency domain. The steering returnability and steering torque phase lag in on-center handling test were also evaluated in the time domain.