• Title/Summary/Keyword: Power system control

Search Result 10,093, Processing Time 0.042 seconds

Effects of Calcination Temperature on Characteristics of Electrospun TiO2 Catalyst Supports for PEMFCs (열처리 온도가 전기방사방법을 이용하여 제조한 PEMFC용 TiO2 담체의 물리적 특성에 미치는 영향)

  • Kwon, Chorong;Yoo, Sungjong;Jang, Jonghyun;Kim, Hyoungjuhn;Kim, Jihyun;Cho, Eunae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) is a power generation system to convert chemical energy of fuels and oxidants to electricity directly by electrochemical reactions. As a catalyst support for PEMFCs, carbon black has been generally used due to its large surface area and high electrical conductivity. However, under certain circumstances (start up/shut down, fuel starvation, ice formation etc.), carbon supports are subjected to serve corrosion in the presence of water. Therefore, it would be desirable to switch carbon supports to corrosion-resistive support materials such as metal oxide. $TiO_2$ has been attractive as a support with its stability in fuel cell operation atmosphere, low cost, commercial availability, and the ease to control size and structure. However, low electrical conductivity of $TiO_2$ still inhibits its application to catalyst support for PEMFCs. In this paper, to explore feasibility of $TiO_2$ as a catalyst support for PEMFCs, $TiO_2$ nanofibers were synthesized by electrospinning and calcinated at 600, 700, 800 and $900^{\circ}C$. Effects of calcination temperature on crystal structure and electrical conductivity of electrospun $TiO_2$ nanofibers were examined. Electrical conductivity of $TiO_2$ nanofibers increased significantly with increasing calcination temperature from $600^{\circ}C$ to $700^{\circ}C$ and then increased gradually with increasing the calcination temperature from $700^{\circ}C$ to $900^{\circ}C$. It was revealed that the remarkable increase in electrical conductivity could be attributed to phase transition of $TiO_2$ nanofibers from anatase to rutile at the temperature range from $600^{\circ}C$ to $700^{\circ}C$.

Design Analysis of Hydraulic Excavator since 1990 (1990년대 유압굴삭기 조형 분석에 관한 연구)

  • 윤진필;문무경
    • Archives of design research
    • /
    • v.13 no.4
    • /
    • pp.233-242
    • /
    • 2000
  • The traditional image of hydraulic excavator started to change in two ways since 1990. First, post-heavy equipment's visual image was new waves to traditional image of heavy, strong, and wild. They are the negative aspect that excavators have. Another movement of getting rid of its negative image can be found in late-heavy equipment, which was intended to adapt traditional and positive, but off negative images. In 1990s, the design trend is moving from warm/hard to warm/soft, and KOBELCO can be exceptional example that went even further, gone up to cool-soft image. KOBELCO specially aimed 'post- excavator image' strategy, which has been successful. Image of cabin as a human space changed little bit further than outside image. Each company tried to differentiate the design of cabin focusing on its safety. Following paragraphs show specific trend of image change in form, colour, texture, and the composition. Major visual image change in form tries to follow the image of cars and home appliances which are showing the movement from tough and hard image to soft one. Structural change on local image shows the movement from angular edge to edgeless and the movement of cabin's pillar C placed to back of the equipment with gentle inclination. All of these movements are the result of effort to improve traditional excavator's negative image, that top structure is assembled separately, to positive ones. Today's tendency about its color becomes important to apply two different colour styles. Each style has brightness and tone comparison. As an enormous power convey system, it was in common that its brightness comparison was useful because of the alarm of its damage possibility. However, as its colour control and its design have been emphasized gradually, the tone comparison takes a part in an important role, too. As an example, there is an occasion that these comparisons are compromised simultaneously. In the respect of its image creation, its texture treatments make the tendency of being the same as passenger cars. It is caused from its development of the manufacture techniques of from the fabrication method in small business to the press method in big firm. Further, it is also because of its improvement of painting & coating skills. It may prohibit the reflection effect from solar rays. In the point of view of its visual images, it is recognized the prominent tendency that its composition has been gradually decreased. Lots of windows and the frames tends dark-colour as a whole. It is more preferred to have one colour image, but except KOBELCO and HITACHI. As well, there is another high-tendency to improve its standard treatments, especially for its corner and texture treatments.

  • PDF

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Introduction of the representative mushroom cultivars and groundbreaking cultivation techniques in Korea

  • Jang, Kab-Yeul;Oh, Youn-Lee;Oh, Minji;Woo, Sung-I;Shin, Pyung-Gyun;Im, Ji-hoow;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.136-141
    • /
    • 2016
  • The production scale of mushrooms in Korea is approximately 600 billion won, which is 1.6% of Korea's gross agricultural output. In Korea, ca. 190,000 tons of mushrooms are harvested annually. Although the numbers of mushroom farms and cultivators are constantly decreasing, total mushroom yields are increasing owing to large-scale cultivation facilities and automation. The recent expansion of the well-being trend has caused an increase in mushroom consumption in Korea: the annual per capita mushroom was 3.9 kg ('13), whichis a little higher than that in Europe. Thus, mushroom export, mainly Flammulina velutipes and Pleurotus ostreatus, has increased since the mid-2000s. Recently, however, it is slightly reduced. Nevertheless, Vietnam, Hong Kong, the United States, and the Netherlands continue to export mushrooms, and Korea has increased its export to Australia, Canada, Southeast Asia, etc. Canned Agaricus bisporus, the first export of the Korean mushroom industry, reached it speak sales in 1977-1978. When Korea initiated trade with China in 1980, the international prices of mushrooms fell sharply, leading to shrinkage of the domestic markets. Spurred by the high demand to develop substitute goods for A. bisporus, the oyster mushroom (P. ostreatus) gained attention since it seemed to suit the taste of Korean consumers. Although the log cultivation technique for oyster mushroom was developed in the early 1970s, it required a great deal of labor. Thus, we developed the shelf cultivation technique, which is easier to manage and allows for mass production. In this technique, the growing shelf is made mafrom fermented rice straw, whichis the only P. ostreatus medium in the world and isused only in South Korea. After then, the use of cotton wastes as an additional material of medium, the productivity. Currently, we are developing a standard cultivation technique and environmental control system that can stably produce mushrooms throughout the year. The increase of oyster mushroom production may boostthe domestic market and contribute to industrial development. In addition, oyster mushroom production technology played a role in forming the basis for the development of bottle cultivation, which made mass production. In particular, bottle cultivation using liquid spawn could allow for the export of F. velutipes and Pleurotus eryngii. In addition, the white varieties of F. velutipes were second developed in the world after Japan. We also developed the new A. bisporus cultivar 'Saeah', which is easy to grow in Korea. In hopes to advance the mushroom industry, we will continue to develop cultivars with international competitive power and to improve cultivation techniques.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.