• Title/Summary/Keyword: Power supply saving

Search Result 137, Processing Time 0.028 seconds

Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type (자원순환형 소각열 이용시스템에 관한 평가)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.

Energy-Saving and Environmental Evaluation of Water Supply System on Replacing Water Storage Installed Booster Pump System by Direct Connecting Booster Pump System (저수조 설치 펌프직송방식의 수도직결 증압방식 전환에 관한 에너지절약성 및 환경성 검토)

  • Lee, Chulgoo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • Currently water supply system with water storage is generally applied except for small building such as single-family houses, and water supply system on replacing water storage installed system by direct connecting system has been increasing because of sanitary and energy-saving aspects. The purpose of this study is to evaluate energy-saving and environmental efficiency of direct connecting booster pump system in comparison with the water storage installed system. The architectural condition of the evaluation subject is ten-story apartment house in which sixty households live. To calculate the power consumption of the pump, the volume of water supply was determined from existing data and other data, such as head, efficiency of the pump, was the value used for general application in design office. The power consumption of the water supply pump for one day was 8.5 kWh for direct connecting booster pump system, and 22.5 kWh for water storage installed system, and the former system showed energy savings of 62% compared to the latter system. Reduced power consumption also leads to reduction of $CO_2$ emission. According to the criteria presented in the Korea Energy Management Corporation, reducing the 2,410 kg $CO_2$ emission is possible per year.

Utility AC Frequency to High Frequency AC Power Frequency Converter without Electrolytic Capacitor Link for Consumer Induction Heating Appliances

  • Sugimura, H.;Eid, A.;Lee, H.W.;Kwon, S.K.;Suh, K.Y.;Nakaoka, M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1364-1367
    • /
    • 2005
  • In this paper, a novel prototype topology of soft switching PWM controlled high frequency AC power conversion circuit without DC voltage smoothing chemical capacitor filter link from the voltage grid of utility frequency AC power supply source with 60Hz-100V or 60Hz-200V is proposed and introduced for innovative consumer induction heating(IH) boiler applications as hot water producer, steamer and super heated vapor steamer.

  • PDF

A Cost Effective Energy Saving of Fluorescent Lighting in Commercial Buildings

  • Lee, Seong-Ryong;Nayar, Chemmangot V.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.215-222
    • /
    • 2012
  • Lighting represents a significant component of commercial buildings, particularly office buildings. Fluorescent lighting is invariably used in all commercial, industrial and residential areas. A significant amount of lighting energy is wasted every day by leaving the lights on and not utilizing daylight energy. However, if daylight illuminance can be harnessed, this will reduce the electricity consumption of fluorescent lamps and save energy. This paper explains possible significant savings in lighting energy consumption and hence in costs, without reducing the performance and visual satisfaction in office or industrial buildings. It is proposed to obtain energy saving by reducing the supply voltage without degradation in lighting performance. Experimental results confirm that as much as 20% of electrical energy can be saved by reducing about 9% of the supply voltage, without noticeably affecting light output while complying with lighting standard limits.

Study on the energy savings in the mobile communication repeater using a power factor correction circuit (역률보상회로를 이용한 이동통신 중계기의 에너지 절감에 관한 연구)

  • Lim, Byoung-Chul;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1854-1860
    • /
    • 2014
  • In this paper, the energy saving on mobile communication repeater is studied. DB(Dual Band) small repeater, which is currently used in the field for indoor coverage, is adopted as a test unit. For reducing the power consumption, PFC (Power Factor Correction) is included on SMPS (Switching Mode Power Supply) of the DB small repeater. The test results show that approximately 38.9% of the power consumption is reduced comparing with the repeater without PFC. It means that approximately 230.43kWh per unit can be saved annually.

GreenIoT Architecture for Internet of Things Applications

  • Ma, Yi-Wei;Chen, Jiann-Liang;Lee, Yung-Sheng;Chang, Hsin-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.444-461
    • /
    • 2016
  • A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.

Development Status of the Regeneration Inverter System for Energy Saving in DC Electric Railway (전철시스템의 에너지절약 회생인버터시스템 개발 현황)

  • Kim, Yong-Ki;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1473-1478
    • /
    • 2007
  • In the respect of energy saving and reusing, it is necessary to reduce greenhouse gases emission and to enhance the operation efficiency in electric railway system. Recently, as the power electronics technologies are advanced, some countries have focused on the regenerative inverter to use regeneration energy on each line. When the electric tractions are stopped or slowed down, it is useful to supply the surplus energy to the power source by regenerative system, which increases its energy efficiency. Also, the generated energy can be supply to other tractions or equipments inside traction. Thus, it may help reduce construction cost of additional power plants. The purpose of this study is to describe the development status of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister.

  • PDF

Field Test of Energy Storage System on Urban Transit System (도시철도용 에너지저장시스템 에너지 절감을 현장시험)

  • Lee, Han-Min;Kim, Gil-Dong;An, Cheon-Heon;Kim, Young-Gyu;Kim, Tae-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

Analysis of GHG Reduction Scenarios on Building using the LEAP Model - Seoul Main Customs Building Demonstration Project - (LEAP 모형을 이용한 건축물의 온실가스 감축 시나리오 분석 - 서울세관건물 그린리모델링 시범사업을 중심으로 -)

  • Yoon, Young Joong;Kim, Min Wook;Han, Jun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.341-349
    • /
    • 2016
  • This study is intended to set a greenhouse gas emission scenario based on green remodeling pilot project (Annex building of Seoul Customs Office) using LEAP model, a long-term energy plan analysis model, to calculate the energy saving and greenhouse gas emission till year 2035 as well as to analyze the effect of electric power saving cost. Total 4 scenarios were made, Baseline scenario, assuming the past trend is to be maintained in the future, green remodeling scenario, reflecting actual green remodeling project of Seoul Customs Office, behavior improvement and renewable energy supply, and Total scenario. According to the analysis result, the energy demand in 2035 of Baseline scenario was 6.1% decreased from base year 2013, that of green remodeling scenario was 17.5%, that of behavior improvement and renewable energy supply scenario was 21.1% and that of total scenario was 27.3%. The greenhouse emission of base year 2013 was $878.2tCO_2eq$, and it was expected $826.3tCO_2eq$, approx. 5.9% reduced, in 2035 by Baseline scenario. the cumulative greenhouse gas emission saving of the analyzing period were $-26.5tCO_2eq$ by green remodeling scenario, $2.8k\;tCO_2eq$ by behavior improvement and renewable energy supply scenario, and $2.0k\;tCO_2eq$ by total scenario. In addition the effect of electricity saving cost through energy saving has been estimated, and it was approx. 634 million won by green remodeling scenario and appro. 726 million won by behavior improvement and renewable energy supply scenario. So it is analyzed that of behavior improvement and renewable energy supply scenario would be approx. 12.7% higher than that of green remodeling scenario.

Statistical analysis for small power module (소형전원장치에 대한 통계적 분석)

  • Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.735-740
    • /
    • 2011
  • In recent, electronic devices were able to develop and focus for ultra-compact size, intelligence, multifunction and broadband. Their SMPS is realized to ultra-compact size, light weight, high efficiency, high reliability, low noises. The power module which can be used to supply DC output from a commercial power supply (85 to 265 VAC). A switching power supply can be made easily by adding simply external circuit, such as microcontroller, a relay, etc. It would be apply to mostly electronic devices, and fit the global project "Saving energy". But we need to statistical analysis for a quality and performance about a load and an output voltage in product.