• 제목/요약/키워드: Power supply module

검색결과 266건 처리시간 0.032초

PV module을 적용한 교통시설물용 PE 드럼 특성에 관한 연구 (A study on the characteristic a PE drum with Traffic Auxiliary System by PV module)

  • 김대근;윤용선;윤형상;차인수;최정식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.101-104
    • /
    • 2001
  • This paper represent about design of the controller for battery of a PE drum for power supply using PV Module. Simulation is represents V-I and power characteristic by Mathematica & Pspice 6.0 & Qnet 2.1. Finally, we composed of road surface-signpost system. This system is successfully operating with high clearness lights.

  • PDF

전력선통신기능 적용 중.대용량 전원공급장치의 대기전력 절감방법 및 구현 (Method and implementation for reducing standby power consumption in intermediate capacity power supply with Power Line Communication)

  • 손도선;김기현;김상철;전의석;이상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1947-1948
    • /
    • 2008
  • This paper presents the implementation of Power Line Communication(PLC) module which can reduce standby-power consumption. The suggested PLC module consists of PLC modem, coupling circuit, ZCP(Zero-Cross Point) Circuit and main SMPS control relay. The test results under power line communication test-bed used home appliance show the 77% saving of standby-power.

  • PDF

친환경 농촌마을계획을 위한 재생에너지 활용방안 연구 - 태양에너지 자원분석 - (A Study on Application of New & Renewable Energy for Environmental-friendly Planning of Rural Villages - Analysis of Solar Energy Resources -)

  • 남상운;김대식
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.105-112
    • /
    • 2008
  • Solar energy, which is one of renewable energy, would be the most useful resources that can be applied to making energy recycling villages without using fossil energy. This study analyzed energy potential on solar energy considering weather condition in three traditional villages and compared with energy consumption surveyed. A photovoltaic system having 3.0kWp capacity of unit module can generate 182.5%, 96.1% and 170.9% of the yearly mean consumption of electric power in Makhyun, Boojang, and Soso, respectively. A flat-plate solar collector having $2.64m^2$ area of unit module can generate warm water of $142{\ell}$/day, $89{\ell}$/day, and $173{\ell}$/day, respectively in three study villages. In Makhyun and Soso, photovoltaic power and warm water produced by solar energy were sufficient to supply required amount of electric power and warm water. However, both electric power and warm water produced by unit solar module were not sufficient in Boojang area, and so it is required to increase the module area by more than 50%. According to the results of this study, the appropriate combination of energy resources can be applied to rural green-village planning if the characteristic of energy potential for each local area is considered.

Power Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System

  • Shin, Soo-Cheol;Lee, Hee-Jun;Kim, Young-Ho;Lee, Jung-Hyo;Lee, Taeck Kie;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1212-1220
    • /
    • 2013
  • In general, for a large power system like DC distribution system for buildings, several power converters are modularized for parallel operation. However, in parallel operation, inconsistency of parameters in each module causes circulating current in the whole system. Circulating current is directly related to loss, and, therefore, it is most important for the safety of the power system to supply the suitable current to each module. This paper proposes a control method to reduce circulating current caused during parallel operation. Accordingly, the validity of parallel operation system including response characteristics and normal state was verified by simulation and experiment result.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

MATLAB/Simulink를 이용한 자동차용 상압형 PEM 연료전지 시스템의 성능 및 효율 분석 연구 (A Study on the Analysis of the Performance and Efficiency of a Low-pressure Operating PEMFC System for Vehicle Applications Using MATLAB/Simulink)

  • 박래혁;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.393-400
    • /
    • 2013
  • The air supply system has a significant effect on the efficiency of polymer electrolyte membrane fuel cell (PEMFC) systems. The performance and efficiency of automotive PEMFC systems are greatly influenced by their air supply system configurations. This study deals with the system simulation of automotive PEMFC systems using MATLAB/Simulink framework. In this study, a low-pressure operating PEMFC system adopting blower sub-module (turbo-blower) is modeled to investigate the effects of stack operating temperature and air stoichiometry on the parasitic power and efficiency of automotive PEMFC systems. In addition, the PEMFC net system efficiency and parasitic power of air supply system are mainly compared for the two types (low-pressure operating and high-pressure operating) of automotive PEMFC systems under the same net power conditions. It is suggested that the obtained results from this system approach can be applied for establishing the novel operating strategies for FC vehicles.

수 초 지속 40 kV, 280 kW 고전압 펄스전원장치 개발 (Development of Few-second 40 kV, 280 kW High Voltage Pulse Power Supply)

  • 김성철;남상훈;허훈;공형섭;문철;김정호;오승섭;양종원;소준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.990-991
    • /
    • 2015
  • To drive a magnetron injection gun, thsi paper decribes a design, fabrication and analysis results of proposed compact capacitor charging power supply (CCPS) formed resonant full-bridge inverter for electron gun power supply (EGPS). EGPS needs the -40 kV output voltage and 280 kW output power for few seconds continuously and have to be designed for the rise and fall time to be less than 1 ms with the ripple stability of output voltage of lower than 1%. In order to meet the requirements, we used eight resonant full-bridge modules operated in parallel. Each resonant full-bridge module can supply the current of 0.9 A and the voltage of 40 kV, and is operated by N-phase shift switching pattern. In this paper, we present the design, simulation and test results of interleaved CCPS.

  • PDF

과도현상 해석을 위한 EAFs 부하 무델의 개발 (An Electric Arc Furnaces Load Model for Transient Analysis)

  • 장길수;;권세혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.197-202
    • /
    • 1999
  • Electric arc furnaces (EAFs) use bulk electrical energy to create heat in metal refining industries. The electric arc process is a main cause of the degradation of the electric power quality such as voltage flicker due to the interaction of the high demand currents of the load with the supply system impedance. The stochastic models have described the aperiodic physical phenomena of EAFs. An alternative approach is to include deterministic chaos in the characterization of the arc currents. In this parer, a chaotic approach to such modeling is described and justified. At the same time, a DLL(Dynamic Link Library) module, which is a FORTRAN interface with TACS (Transient Analysis of Control Systems), is developed to implement the chaotic load model in the Electromagnetic Transients Program (EMTP). The details of the module and the results of tests performed on the module to verify the model and to illustrate its capabilities are presented in this paper.

  • PDF

낸드 플래시 메모리와 PSRAM을 이용한 비동기용 불휘발성 메모리 모듈 설계 (Design of Asynchronous Non-Volatile Memory Module Using NAND Flash Memory and PSRAM)

  • 김태현;양오;연준상
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.118-123
    • /
    • 2020
  • In this paper, the design method of asynchronous nonvolatile memory module that can efficiently process and store large amounts of data without loss when the power turned off is proposed and implemented. PSRAM, which takes advantage of DRAM and SRAM, was used for data processing, and NAND flash memory was used for data storage and backup. The problem of a lot of signal interference due to the characteristics of memory devices was solved through PCB design using high-density integration technology. In addition, a boost circuit using the super capacitor of 0.47F was designed to supply sufficient power to the system during the time to back up data when the power is off. As a result, an asynchronous nonvolatile memory module was designed and implemented that guarantees reliability and stability and can semi-permanently store data for about 10 years. The proposed method solved the problem of frequent data loss in industrial sites and presented the possibility of commercialization by providing convenience to users and managers.

독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구 (A Study on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply)

  • 김기영;최우진
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.77-85
    • /
    • 2018
  • Renewable energy has been increasingly used and widely acclaimed as one of the solutions to rampant environmental problems. Among numerous kinds of renewable sources, the penetration rate of the PV system is relatively higher than that of others due to ease of installation. However, one disadvantage of the PV system is its dependence on weather condition. The PV system is especially critical when it is used for standalone systems because it cannot operate when the power generated from a PV module is not enough. Therefore, PV systems are often used with an energy storage system, such as batteries, to store backup energy when the weather condition is insufficient to supply power to the system. Blackout time can be reduced by increasing the size of the energy storage system, but it is a trade-off with system cost. In this work, optimal sizing of a standalone PV system is proposed to supply power to the system without blackout. The sizing of PV modules and batteries is performed by a simulation based on actual irradiation data collected during the past five years. The Life cycle costing of each system is evaluated to determine an optimal set of PV modules and batteries among several different combinations. The standalone PV system designed by the proposed method can supply power to the system with no interruption as long as the weather condition is similar to those of the past five years.