• Title/Summary/Keyword: Power stability

Search Result 3,560, Processing Time 0.035 seconds

A New Approach to the Stability Analysis Method of Net-worked Control Systems

  • Joonhong Jung;Park, Sooyoung;Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.53.6-53
    • /
    • 2002
  • $\textbullet$ Present a new stability analysis method of NCSs $\textbullet$ Propose the stability condition of NCSs with dynamic controller $\textbullet$ Find the stability region where NCSs for power system are guaranteed to be stable $\textbullet$ Determine a proper sampling period of NCSs that preserves desired stability performance $\textbullet$ Experiment : NCSs for power system using CAN.

  • PDF

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

A New Negative Impedance Stabilizing Control Technique for Switching Power Supplies with Constant Power Loads

  • Emadi A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.276-280
    • /
    • 2001
  • In this paper, an approach to the design of negative impedance stabilizing controllers for PWM DC/DC converters that are used in DC switching. power supplies with constant power loads is presented. The control approach is based on the feedback linearization technique. Because of the negative impedance destabilizing characteristics of constant power loads, classical linear control methods have stability limitations around the operating points. However, the proposed stabilizing technique improves large-signal stability and dynamic responses. The proposed controllers are simulated and their responses under different operations are studied. Stability of the control technique is also verified using the second theorem of Lyapunov.

  • PDF

A Study of Reactive power control for voltage stability enhancement in power system (전력계통의 전압안정도 향상을 위한 변전소의 무효전력 제어 연구)

  • Lee, Hyun-Chul;Park, Ji-Ho;Jyung, Tae-Young;Jeong, Ki-Seok;Lee, Sang-Duk;You, Hung-Sun;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.191-192
    • /
    • 2011
  • The transmission capacity has been highlighted as a problem in the power company according to operated heavy loaded of transmission facility. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. This paper proposes a study on determination of the adequate var sizing of power compensator regarding the transfer capability enhancement in power system. This method was controlled power compensator in substation becasue of the voltage stability. It was simulated power system using EMS peak data.

  • PDF

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.

A Study on High Precision and High Stability Digital Magnet Power Supply Using Second Order Delta-Sigma modulation (2차 델타 시그마 변조기법을 이용한 고 정밀 및 고 안정 디지털 전자석 전원 장치에 관한 연구)

  • Kim, Kum-Su;Jang, Kil-Jin;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.69-80
    • /
    • 2015
  • This paper is writing about developing magnet power supply. It is very important for power supply to obtain output current in high precision and high stability. As a switching noise and a power noise are the cause of disrupting the stability of output current, to remove these at the front end, low pass filter with 300Hz cutoff frequency is designed and placed. And also to minimize switching noise of the current into magnet and to stop abrupt fluctuations, output filter should be designed, when doing this, we design it by considering load has high value inductance. As power supply demands the stability of less than 5ppm, high precision 24bit(300nV/bit) analog digital converter is needed. As resolving power of 24bit(300nV/bit) analog digital converter is high, it is also very important to design the input stage of analog digital converter. To remove input noise, 4th order low pass filter is composed. Due to the limitation of clock, to minimize quantization error between 15bit DPWM and output of ADC having 24bit resolving power, ${\Sigma}-{\Delta}$ modulation is used and bit contracted DPWM is constituted. And before implementing, to maximize efficiency, simulink is used.

A Fast Contingency Screening Algorithm for On-line Transient Security Assessment Based on Stability Index

  • Nam, Hae-Kon;Kim, Yong-Hak;Song, Sung-Geun;Kim, Yong-Gu
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.131-135
    • /
    • 2002
  • This paper describes a new ultra-fast contingency screening algorithm for on-line TSA without time simulation. All machines are represented in a classical model and the stability index is defined as the ratio between acceleration power during a fault and deceleration power after clearing the fault. Critical clustering of machines is done based on the stability index, and the power-angle curve of the critical machines is drawn assuming that the angles of the critical machines increase uniformly, while those of the non-critical ones remain constant. Finally, the critical clearing time (CCT) is computed using the power-angle curve. The proposed algorithm is tested on the KEPCO system comprised of 900-bus and 230-machines. The CCT values computed with the screening algorithm are in good agreement with those computed using the detailed model and the SIME method. The computation time for screening about 270 contingencies is 17 seconds with 1.2 GHz PC.

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

Eigenvalue Analysis of Power Systems with GTO Controlled SSSC by the RCF Method (GTO 제어 SSSC가 설치된 계통의 RCF 해석법에 의한 고유치 해석)

  • Dong, Moo-Hwan;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.230-231
    • /
    • 2006
  • In this paper, the RCF(Resistive Companion Form) analysis method is used to analyze small signal stability of power systems including GTO controlled FACTS equipment such as SSSC. To apply the RCF analysis method in power system small signal stability problems, state transition equations of power system equipments and power systems with SSSC are presented. In eigenvalue analysis of power systems by the RCF analysis method, SSSC is modelled into the equivalents voltage source model and PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodic switching device such as SSSC.

  • PDF

Rotordynamic Design and Stability Prediction of 100 Watts Micro Power System (100 Watts 급 초소형 파워 시스템의 회전체 동역학적 설계 및 안정성 예측)

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Ryu, Keun;Kim, Chang-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.459-464
    • /
    • 2003
  • The Roordynamic feasibility of Micro Power System supported by air foil bearings is investigated. The Micro Power System is new portable power source based on brayton cycle, which consists of compressor, turbine, generator, and combustion chamber. In this paper, the analysis of Rotordynamic characteristics of Micro Power System is performed based upon the bearing equilibrium position, Campbell diagram and stability. As a result, it is demonstrated that the air foil bearings could be adopted well to the Micro Power System. However, for more stable operation at target running speed, the damping characteristics of air foil bearing should be enhanced.

  • PDF