• Title/Summary/Keyword: Power smoothing control

Search Result 59, Processing Time 0.029 seconds

Smoothing Output Power Variations of Isolated Utility Connected Multiple PV Systems by Coordinated Control

  • Datta, Manoj;Senjyu, Tomonobu;Yona, Atsushi;Sekine, Hideomi;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.320-333
    • /
    • 2009
  • A Photovoltaic (PV) system's power output varies with the change of climate. Frequency deviations, tie line voltage swings are caused by the varying PV power when large PV power from several PV systems is fed in the utility. In this paper, to overcome these problems, a simple coordinated control method for smoothing the variations of combined PV power from multiple PV systems is proposed. Here, output power command is formed in two steps: central and local. Fuzzy control is used to produce the central smoothing output power command considering insolation, variance of insolation and absolute average of frequency deviation. In local step, a simple coordination is kept between the central power command and the local power commands by producing a common tuning factor. Power converters are used to achieve the same output power as local command power employing PI control law for each of the PV generation systems. The proposed method is compared with the method where conventional Maximum Power Point Tracking (MPPT) control is used for each of the PV systems. Simulation results show that the proposed method is effective for smoothing the output power variations and feasible to reduce the frequency deviations of the power utility.

An Edge-Based Algorithm for Discontinuity Adaptive Image Smoothing (에지기반의 불연속 경계적응 영상 평활화 알고리즘)

  • 강동중;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.273-273
    • /
    • 2000
  • We present a new scheme to increase the performance of edge-preserving image smoothing from the parameter tuning of a Markov random field (MRF) function. The method is based on automatic control of the image smoothing-strength in MRF model ing in which an introduced parameter function is based on control of enforcing power of a discontinuity-adaptive Markov function and edge magnitude resulted from discontinuities of image intensity. Without any binary decision for the edge magnitude, adaptive control of the enforcing power with the full edge magnitude could improve the performance of discontinuity-preserving image smoothing.

  • PDF

Active and Reactive Power Control of ESS in Distribution System for Improvement of Power Smoothing Control

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Cha, Jae-Hun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1007-1015
    • /
    • 2017
  • This paper proposes a new control technique of energy storage system (ESS) for smoothing the active power of renewable energy sources (RES) such as photovoltaic and wind turbine generation. As the penetration of RES into grid increases, it is difficult to maintain the permissible level of power quality, that is, voltage and frequency fluctuation in power systems. To solve this problem, ESS control methods using low pass filter (LPF) have been proposed for mitigating the fluctuation of RES output. However, those have a lot of drawbacks which need to be supplemented. Hence, this paper presents the improved active power control with additional reactive power control for maintaining power quality properly. The proposed method minimizes the capacity of ESS to be required for smoothing RES output fluctuation through mitigation of phase delay problem in LPF. In addition, the voltage regulation improves by using additional reactive power control. The proposed method was verified through simulation analysis using PSCAD/EMTDC.

Improved Frequency Mitigation of a Variable-Speed Wind Turbine (개선된 가변속 풍력발전기의 주파수 평활화)

  • Li, Mingguang;Yang, Dejian;Kang, Yong Cheol;Hong, Junhee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.695-701
    • /
    • 2018
  • For a power grid that has a high wind penetration level, when wind speeds are continuously fluctuating, the maximum power point tracking (MPPT) operation of a variable-speed wind turbine (VSWT) causes the significant output power fluctuation of a VSWT, thereby significantly fluctuating the system frequency. In this paper, an improved power-smoothing scheme of a VSWT is presented that significantly mitigates the frequency fluctuation caused by varying wind speeds. The proposed scheme employs an additional control loop based on the frequency deviation that operates in combination with the MPPT control loop. To improve the power-smoothing capability of a VSWT in the over-frequency section (OFS), the control gain of the additional loop, which is set to be inversely proportional to the rotor speed, is proposed. In contrast, the control gain in the under-frequency section is set to be proportional to the rotor speed to improve the power-smoothing capability while avoiding over-deceleration of the rotor speed of a VSWT. The proposed scheme significantly improves the performance of the power-smoothing capability in the OFS, thereby smoothing the frequency fluctuation. The results clearly demonstrate that the proposed scheme significantly mitigates the frequency fluctuation by employing the different control gain for the OFS under various wind penetration scenarios.

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

Ripple Voltage Compensation Instantaneous Follow Controller of Inverter by using Analog Integrator (아날로그 적분기를 이용한 맥동전압 보상형 순시추종 PWM 제어기를 적용한 인버터)

  • 라병훈;이현우;김광태
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • In this paper, it is suggested that instantaneous compensation PWM control for inverter without the smoothing capacitor Therefore, this inverter system has several advantages. It has small volume and low price to manufacture, decrease trouble rate of inverter, and has power factor correction effect because huge smoothing capacitor-less. And it has compact size control circuit to use analog integrator device. It could make the smoothing capacitor-less inverter for air-blower motor by using the instantaneous compensation PWM controller. This inverter system has small volume and value compare with the conventional VVVF control inverter.

Wind Power Smoothing Control Technique using Energy Storage System (에너지저장장치를 이용한 풍력발전의 출력 평준화 제어 기법 연구)

  • Lee, Jinho;Lee, Moonhwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.1-178.1
    • /
    • 2010
  • 기후변화 대응을 위해 세계적으로 신 재생에너지의 분담율(penetration rate)은 갈수록 증가하고 있고, 정부에서는 2015년까지 신 재생에너지의 개발에 총 40조원을 투자한다는 적극적인 계획을 세우고 있다. 하지만 신 재생에너지 중 전력 생산에 가장 큰 비중을 차지하는 풍력발전은 비급전성과 간헐성 등의 제약으로 인해 안정적인 전력을 공급하기 힘들뿐만 아니라 전력계통의 신뢰성을 악화시킬 수도 있는 리스크를 잠재하고 있는 에너지원이다. 이에 풍력발전 등 신 재생에너지원의 출력을 안정화시키기 위한 Smart Renewable 프로젝트가 현재 제주도에서 실증 단계에 있다. 이 논문에서는 한국전력 컨소시엄의 Smart Renewable 프로젝트 대상인 660kW급 풍력터빈과 200kWh급 리튬-이온 배터리 에너지저장장치를 이용하여, 풍력터빈의 출력을 평활화시키는 평활화 제어(Smoothing Control)와 일정시간동안 균일한 출력을 낼 수 있게 하는 정출력 제어(Constant Power Control)의 두 가지 기법을 시뮬레이션 하였다. t 시점의 에너지저장장치 잔존용량을 피드백 받아 t+1 시점의 풍력터빈과 에너지저장장치 합성출력의 목표치를 설정하는 잔존용량 피드백 방법을 이용하여 에너지저장장치의 운전모드, 초기 용량, 평활화 시정수(time constant) 등의 조건 변화가 평활화 제어와 정출력 제어에 미치는 영향을 각각 확인하고, 주어진 기기 조건 하에서 최적의 시정수 값과 운전모드를 도출하였다.

  • PDF

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm (풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정)

  • Kim, SeongHyun;Ko, JiHan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF