• Title/Summary/Keyword: Power performance

Search Result 17,268, Processing Time 0.055 seconds

Boiler Performance Characteristics Change by UC Contents Increase for Coal Fired Power Plant (석탄연소 화력발전소에서 미연탄소분 농도 증가가 보일러 성능에 미치는 영향에 관한 연구)

  • Kim, Taehyung;Park, Byungchul
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.99-102
    • /
    • 2015
  • To operate coal fired power plant efficiently is considered unburned carbon as important factor. But, unburned carbon contents change does not have an impact on Boiler performance simultaneously. we evaluated that unburned carbon contents change had an little influence on unburned carbon loss change for performance side at a real power plant.

  • PDF

High Efficiency Power Amplifier using Analog Predistorter (아날로그 전치왜곡기를 이용한 고효율 전력증폭기)

  • Choi, Jang-Hun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents the Doherty power amplifier with a digitally controlled analog predistorter circuit of Scintera Corp. to produce high power efficiency and high linearity performance. The analog predistorter improves the linearity performance because of controlling amplitude and phase values of input signal in order to improve intermodulation performance of power amplifier. Also, the power amplifier is designed by the Doherty technology to obtain the high efficiency performance. To validate the Scintera's analog predistorter, we are implemented the power amplifier with Doherty method at center frequency 2150 MHz. Compared with the balanced amplifier, the power amplifier is improved above 11% enhanced efficiency and more than 15 dB ACPR improvement.

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance (계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략)

  • Han, Dae-Su;Suh, Yong-Sug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.

Critical Characteristics Estimation of a Large-Scale HTS Wind Turbine Generator Using a Performance Evaluation System

  • Kim, Taewon;Woo, Sang-Kyun;Kim, Changhyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Large-scale High Temperature Superconducting (HTS) wind power generators suffer from high electromagnetic force and high torque due to their high current density and low rotational speed. Therefore, the torque and Lorentz force of HTS wind power generators should be carefully investigated. In this paper, we proposed a Performance Evaluation System (PES) to physically test the structural stability of HTS coils with high torque before fabricating the generator. The PES is composed of the part of a pole-pair of the HTS generator for estimating the characteristic of the HTS coil. The 10 MW HTS generator and PES were analyzed using a 3D finite element method software. The performance of the HTS coil was evaluated by comparing the magnetic field distributions, the output power, and torque values of the 10 MW HTS generator and the PES. The magnetic flux densities, output power, and torque values of the HTS coils in the PES were the same as a pole-pair of the 10 MW HTS generator. Therefore, the PES-based evaluation method proposed in this paper can be used to estimate the critical characteristics of the HTS generator under high magnetic field and high torque before manufacturing the HTS wind turbines. These results will be used effectively to research and manufacture large-scale HTS wind turbine generators.

A Preliminary Study on the Communication Effect on Team Performance in Main Control Room of SMART

  • Heo, Eun Mee;Byun, Seong Nam
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.97-106
    • /
    • 2013
  • Objective: The aim of this study is to investigate the attributing factors influencing team performance. Background: Technically, it is necessary that operators adapt themselves to computerized and advanced techniques to operate the main control rooms safely in nuclear power plant in Korea. The more main control rooms are digitalized, the more important for operators to have high team performance it is. Method: This paper analyzes team process through literatures review and elicits team performance shaping factor. Especially, the objective of this research is to elicit communication using common team performance shaping factors. Results: This study has found communication through team performance shaping factors in Main Control Room of the SMART. Conclusion: This paper can offer a starting point for team communication, which can use team performance shaping factor framework that are emerging in these new nuclear power plant. Application: As a result, I expect that the evaluation communication for MCR operator's team performance will lead the operating techniques in nuclear power industry internationally.

A Study on Performance Degradation Analysis of Gas Turbine Combined Heat and Power Plant (가스터빈 열병합발전소 성능저하 분석에 관한 연구)

  • Kim, Hong Joo;Kim, Byeong Heon;Oh, Byeong Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.248-255
    • /
    • 2016
  • In this study, the degree of performance changes between the guaranteed performance and the performance after a certain operating start time is calculated by using the performance test of gas turbine CHP. The reason of the performance degradation will then be analysed. For some results of the CHP plant performance tests the comprehensive electric power output was 8,380 kW lower than the guaranteed performance, and the gas turbine's output was reduced to about 250 kW whenever ambient temperatures rose to $1^{\circ}C$. Also, causes of the performance degradation of gas turbines are ambient temperature rise, temperature aging and air compressor's efficiency drop.

A Study on the Effects of Risk Perception and Opportunism on the Project Performance (위험인식과 기회주의 행동이 프로젝트 성과에 미치는 영향에 관한 연구)

  • Yoon, Chang Soo;Jo, Dong Hyuk
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Purpose: The purpose of this study is to analyze the effects of risk perception and opportunistic behavior on project performance and the moderating effect of cooperation in this relationship through literature review to identify factors affecting the performance of large-scale nuclear power plant construction projects. Methods: This study conducted a survey on nuclear power plant construction project participants and verified the hypothesis using statistical methods. Results: The results of this study are as follows; First, risk perception appeared to have a positive effect on opportunistic behavior, and it was confirmed that opportunistic behavior among participating companies could occur even in nuclear power plant construction projects. Second, it has been proven that risk perception has a negative effect on project performance as suggested in previous studies. Third, in the relationship between opportunistic behavior and project performance, it was found that opportunistic behavior had a negative effect on project performance. Finally, cooperation was found to have a moderating effect on the relationship between performance risk and project performance. Conclusion: This study is a case of empirical analysis targeting nuclear power plant construction project workers, and provided a basis for reference in future related academic research and project implementation.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.