• 제목/요약/키워드: Power modeling

Search Result 3,057, Processing Time 0.029 seconds

Relative Power Density Distribution Calculations of the Kori Unit 1 Pressurized Water Reactor with Full-Scope Explicit Modeling of Monte Carlo Simulation

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.375-384
    • /
    • 1997
  • Relative power density distributions of the Kori Unit 1 pressurized water reactor are calculated by Monte Carlo modeling with the MCNP code. The Kori Unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starling with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system converges to a k value of 1.00039 $\geq$ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori Unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root moan square error of 2.159%.

  • PDF

Modeling and Simulation for Dynamic Behaviors of SOVR for Electric Power Plant (P&S를 활용한 발전용 SOVR의 모델링과 동특성 해석)

  • 노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.203-203
    • /
    • 2000
  • The P&S(Power Plant Simulation System) is a powerful simulation software system for the dynamic behavior of power plants. The P&S module libraries provide plant models with higher flexibility of dynamic simulations for process and control designs. The P&S software was effectively available for PCS based on Linux and modem workstations based on Unix. The P&S was applied for simulating the dynamic behaviors of the SOVR(Supercritical Once-Through Variable Pressure Reheater) according to the operations such as stan-up, shutdown, load following, load change and trip in order to obtain an optimal operation procedure for Unit 5/6 of Taeahn fossil power plant consisted of SOVRs and steam turbines.

  • PDF

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Improvement of line Current using Instantaneous Real Power Compensation of DSTATCOM (DSTATCOM의 순시 유효전력 보상을 이용한 선로의 전류 개선)

  • Jeong, Su-Yeong;Kim, Tae-Hyeon;Mun, Seung-Il;Gwon, Uk-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.327-332
    • /
    • 2002
  • In this paper, conventional reactive power compensation is defined and instantaneous real control concept for shunt converters is proposed. This equipment incorporates the compensation function of harmonics at the distribution line by nonlinear load. These methodologies are applied to IEEE 13 distribution system with the modeling of nonlinear load using EMTEDC/PSCAD package. Simulation with EMTDC results presented to confirm that the new approach has better performance than those obtained by controllers based on traditional concepts of reactive power compensation.

Development of PCM Current Differential Relay Setting Module Using UML (UML(Unified Modeling Language)기법을 이용한 PCM전류차동계전기 정정모듈 개발)

  • Oh, T.W.;Oh, S.M.;Min, B.U.;Lee, S.J.;Choi, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.329-331
    • /
    • 2003
  • PROSET2000 that is integrated protective management system had developed and used in order to automate the setting process of protective relays in transmission system protection. PROSET2000 have database for relay setting and automated for relay setting program within. This paper proposed PCM current differential relay setting program point of Object Oriented Programming paradigm using Unified Modeling Language about additional relay in PROSET2000. Nevertheless each relay uses same current differential but setting method is different. This paper discribed different thing about setting method of each relay and evaluated more effective and corrective relay setting program using UML.

  • PDF

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

Development of Dynamic Models for DFIG Wind Farms and HVDC in Jeju Power System Using PSS/E (PSS/E를 이용한 제주계통의 DFIG 풍력발전단지 및 HVDC 동적모델 개발)

  • Nam, Soon-Ryul;Kang, Sang-Hee;Nam, Hae-Kon;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2183-2189
    • /
    • 2011
  • Since main portion of the required electric power in Jeju Island is provided from the mainland through two HVDC lines, Jeju HVDC has a most significant impact on Jeju power system. Average wind speed of Jeju Island is the highest among several candidates in South Korea. So, Jeju Island has been a suitable site for the construction of wind farms where several wind farms are now operating and several others to be sited. Since the large-scale wind generation could have adverse impacts on the stable operation of Jeju power system, wind power is also important for the stability of Jeju power system. Therefore, accurate modeling of Jeju HVDC and wind farms is required for stability analysis of Jeju power system. In this paper, PSS/E-based dynamic modeling of Jeju HVDC and DFIG wind farms is proposed. Model-writing technique of PSS/E is used to develop USRAUX model and USRMDL model for controlling the frequency of HVDC and imposing an operation limit of wind power, respectively. Dynamic characteristics of Jeju HVDC and DFIG wind farms are analyzed through the dynamic simulations. The simulation results show the effectiveness of the developed models for Jeju power system.

An Industrial Case Study of the ARM926EJ-S Power Modeling

  • Kim, Hyun-Suk;Kim, Seok-Hoon;Lee, Ik-Hwan;Yoo, Sung-Joo;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2005
  • In this work, our goal is to develop a fast and accurate power model of the ARM926EJ-S processor in the industrial design environment. Compared with existing work on processor power modeling which focuses on the power states of processor core, our model mostly focuses on the cache power model. It gives more than 93% accuracy and 1600 times speedup compared with post-layout gate-level power estimation. We also address two practical issues in applying the processor power model to the real design environment. One is to incorporate the power model into an existing commercial instruction set simulator. The other is the re-characterization of power model parameters to cope with different gate-level netlists of the processor obtained from different design teams and different fabrication technology.

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

A Standard Guide to Physical Oceanographic Survey of the Effect of Thermal Discharge from a Nuclear Power Plant (원자력발전소 온배수 영향 해양물리분야 조사의 표준지침)

  • Lee, Jae-Hak;Ro, Young-Jae;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • The methods of physical oceanographic surveys to examine the effect of thermal discharge from nuclear power plants in Korea have been reviewed and a standard guide to the survey is proposed. It is desirable that in situ observation and numerical thermal diffusion modeling are conducted simultaneously to describe the variation in temperature distribution affected by thermal discharge from a power plant because any observation or numerical modeling alone has limits to do so quantitatively. It is suggested that the field observation must be based on the concept of heat budget modeling considering all artificial and natural heat sources/sinks around the power plant. Any results from numerical modeling must reach to a certain statistical significance level to use for a standard temperature distribution. In addition, the development of standard numerical codes is proposed to improve the problems shown in the past numerical circulation and diffusion modelling.