• Title/Summary/Keyword: Power management

Search Result 6,032, Processing Time 0.03 seconds

The Effect of Power Sources of Department Store and Fashion Company, and Salesperson's Job Consciousness on Job Satisfaction in the Middle Management System of Department Store (백화점 중간관리 형태에서 백화점 및 패션업체의 권력원천과 판매원의 직업의식이 직무만족에 미치는 영향)

  • Lee, Hyun-Jin;Choo, Tae-Gue
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.230-241
    • /
    • 2012
  • The purpose of this study was to examine the effect of power sources of department store and fashion company, and salesperson's job consciousness on job satisfaction in the middle management system of department store. Questionnaire data from 193 salespeople in the middle management of department store were analyzed by reliability analysis, factor analysis, correlation analysis, multiple regression analysis, hierarchical regression analysis. The results of this study were as follows: First, coercive power, informational and expert power, and referent power of department store had significant effects on job satisfaction. The coercive power of department store had a negative influence on job satisfaction, while informational and expert power, and referent power of department store had a positive influence on job satisfaction. Second, referent power, expert power, reward power, coercive power of fashion company had a positive influence on job satisfaction. Third, referent power of department store had a greater influence on job satisfaction than other power sources. Fourth, job commitment and pride, prospect awareness had a positive influence on job satisfaction, while professional self-awareness had no effect on job satisfaction.

Design of a Cooperative Voltage Control System Between EMS (VMS) and DMS

  • Shin, Jeonghoon;Lee, Jaegul;Nam, Suchul;Song, Jiyoung;Oh, Seungchan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.279-284
    • /
    • 2020
  • This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.

A Study About Grid Impose Method On Real-Time Simulator For Wind-Farm Management System (풍력발전단지 관리·분석 시스템의 Real-Time Simulator 도입을 위한 계통모델 연동방안 연구)

  • Jung, Seungmin;Yoo, Yeuntae;Kim, Hyun-Wook;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.28-37
    • /
    • 2015
  • Owing to the variability of large-scaled wind power system, the development of wind farm management technologies and related compensation methods have been receiving attention. To provide an accurate and reliable output power, certain wind farm adopts a specified management system including a wind prediction model and grid expectation solutions for considering grid condition. Those technologies are focused on improving the reliability and stability issues of wind farms, which can affect not only nearby system devices but also a voltage condition of utility grid. Therefore, to adapt the develop management system, an expectation process about voltage condition of Point of Common Coupling should be integrated in operating system for responding system requirements in real-time basis. This paper introduce a grid imposing method for a real-time based wind farm management system. The expected power can be transferred to the power flow section and the required quantity about reactive power can be calculated through the proposed system. For the verification process, the gauss-seidel method is introduced in the Matlab/Simulink for analysing power flow condition. The entire simulation process was designed to interwork with PSCAD for verifying real power system condition.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

Design and Implementation of NSM based Security Management System in Smart Grid (스마트그리드 전력망의 NSM 기반 보안관리시스템 설계 및 구현)

  • Chang, Beom Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • In this paper, we designed the security management system based on IEC 62351-7 in the Smart Grid environment. The scope of IEC 62351-7 focuses on network and system management (NSM) of the information infrastructure as well as end-to-end security through abstract NSM data objects for the power system operational environment. However, it does not exist that security management system based on IEC 62351-7 manages the security of the power system in the Smart Grid environment, because power equipment or SNMP agents providing NSM data do not exist yet. Therefore, we implemented the security management system to manage the information infrastructure as reliably as the power system infrastructure is managed. We expect that this system can perform the security management of IEC 61850 based digital substation and can be a prototype of the security system for the Smart Grid in the future.

A Study on the Improving Power System Reliability According to the Reactive Power Problem in the Bulk Power Station (대전원단지의 무효전력 출력제약에 따른 영향에 대한 연구)

  • Song, Seok-Ha;Joo, Joan-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.73-75
    • /
    • 2002
  • This paper presents the properly method of system security and facility countermeasures. We performed simulation for yearly peak of Korean power system in 2002 under the reactive power problem in a nuclear power plants. Analysis of the problems in power system operation by power flow, fault and stability study. Establishment of power system optimal operating plan by stabilizer and maintaining the reasonable voltage level.

  • PDF

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.