• Title/Summary/Keyword: Power line

Search Result 6,047, Processing Time 0.038 seconds

Cost Reduction through Shortest Path Connection of Electric Power Line (전선의 최단거리 루트 선정을 통한 공사비용 절감 방안)

  • Lee, Sang-Joong;Yoon, Jun-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • The shorter the electric power line is, the less its cost becomes. In this paper, the Steiner tree is applied to find the shortest path of the electric power line to obtain resultant cost reduction. Up to 18.3[%] of length reduction can be expected compared to conventional method when the lines are connected through the Steiner points, which also can result in appreciable cost reduction.

Power Flow Control of Modular Multilevel Converter based on Double-Star Bridge Cells Applying to Grid Connection

  • Hamasaki, Shin-Ichi;Okamura, Kazuki;Tsuji, Mineo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.246-253
    • /
    • 2013
  • The Modular Multilevel Converter (MMC) with full bridge cells is available for utility interactive inverter in high voltage line. When it is interconnected with power line, it is possible to control the active power flow in order to supply or charge the power in the line. This research applied the MMC to grid connection system of distributed generator and a power flow control for the MMC is investigated. Theory of power flow between the MMC and the power line is described and control method of power flow and capacitor voltages on arm cells for the MMC are proposed. And effectiveness of the proposed control method is presented by simulation.

Accurate Power Sharing in Proportion for Parallel Connected Inverters by Reconstructing Inverter Output Impedance

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1751-1759
    • /
    • 2018
  • This paper presents parallel-connected inverters to achieve accurate proportional power sharing. Due to line impedance mismatch, reactive power cannot be distributed proportionally when using the conventional $P-{\omega}$ and $\mathcal{Q}-E$ droop. In order to realize reactive proportional power sharing, the ratio of the droop coefficients should be inversely proportional to their power-sharing ratios. Meanwhile, the ratio of the line impedance should be inversely proportional to the desired power-sharing ratio, which is very difficult to be met in practice. In order to deal with this issue, a practical control strategy is presented. By measuring the PCC voltage and using the virtual impedance, the output impedance of individual inverters is reconstructed to counteract the line impedance effect. In order to guarantee system stability, a low pass filter is designed to suppress the bandwidth of the line compensation. Finally, the simulation and experimental results are given to verify the effectiveness of the proposed control strategy.

A Study of Electromagnetic Interference in Power Line Communication (전력선 통신에서의 전자파 장해에 관한 연구)

  • Lee Jin-Taek;Chun Dong-Wan;Park Young-Jin;Lee Won-Tae;Shin Chul-Chai
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.620-625
    • /
    • 2004
  • In this paper, we studied the emissive electric field due to the communication signal and the noise in medium voltage power-line. There are many types of conductive noise in power-line channel, which gives rise to radiation. And if the DMT carrier signal was excited, the current by this term was added to the current by noise and, generate radiation. We calculated input impedance by means of signal input network model of medium voltage power-line channel for calculating these currents. We calculated currents by input impedance and, calculated the emissive electric field by this calculated currents. From the measurement results, we knew that the measured results are very similar to the calculated results and if the input signal power level was higher than -40 dBm, the emissive electric field exceeds FCC radiation limit level 69.5 dB$\mu$V/m.

Design and Analysis of 8-Port Power Divider for Using RLH-TL(Right/Left-Handed Transmission Line) (RLH-TL (Right/left-handed transmission line)을 이용한 8 port 전력 분배기 설계 및 분석)

  • Kim, Hyung-Mi;Lee, Bom-Son
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.29-32
    • /
    • 2005
  • In this paper, we present the 8 port in-phase power divider using right/left-handed transmission line. The proposed power divider splits the input power into 8 port regardless of the electrical length of transmission lines. Its size is much smaller than the conventional one. As the length of the transmission line in the power divider decreases, its bandwidth becomes wider.

  • PDF

Design of a Bidirectional Adaptive Coupler for Spread Spectrum Power Line Communications (대역 확산 전력선 통신을 위한 양방향 적응 결합기 설계)

  • Yu, Young-Gyu;Woo, Dae-Ho;Choi, Seok-Woo;Kim, Dong-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.623-628
    • /
    • 2007
  • This paper presents the new power line coupler which is applicable to spread spectrum power line communications. The proposed coupler maintains the adequate value of a capacitor between the transmitter mode and the receiver mode using a switch. In the transmit mode, the relatively high value of the capacitor is chosen to minimize the attenuation of transmitted signals. In the receiver mode, the value of the capacitor is chosen to be small enough so that the coupler attenuates power line noises. This coupler reduced the magnitude distortion due to having a high Q value and the power consumption caused by the AC current flowing into the capacitor. The simulation and measurement results show the improved performance in the transmitter and receiver mode, respectively.

Characteristics Analysis of Powerline Channel for Powerline Communication (전력선 통신을 위한 채널 특성 분석)

  • Lee, J.H.;Seo, J.W.;Lee, J.J;Shin, M.C.;Sung, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.558-560
    • /
    • 2000
  • The role of power line is not limited to providing electrical power. Power line fumed out to be an candidate to cope with the existing communication channels. It is need to be measured the properties of power line as communication channels, before successful communication system is possible. This paper presents the characteristics of power line noise and attenuation measurements in the frequency range of $0{\sim}10$ MHz, and then suggests applicable communication techniques in brief. Power line channel is configured in our laboratory and the length of it is 250 meters.

  • PDF

Development of a Measuring Instrument of Current and Voltage on Power-Transmission Lines for the Construction of Energy-Network

  • Park, Kyi-Hwan;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.2-107
    • /
    • 2001
  • We propose portable equipment that monitors a current and potential on high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to a hollow insulator that supports a power transmission line: A current on a power line is detected by an air-core solenoidal coil clamped to the line and the detected current signal is transmitted to the ground station by using optical data link, A potential on a power transmission line is detected by a high resistance element, zinc oxide (ZnO) that acts as a potential divider between the power line and the ground. The equipment does not require high potential insulators and magnetic cores which. This leads to the following advantages of the equipment: (a) It is easily installed owing to its small size and its simple structure; (b) It operates in low ...

  • PDF

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF