• Title/Summary/Keyword: Power line

Search Result 6,054, Processing Time 0.04 seconds

Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra (기하대수에 의한 비정현파 다선식 전력계통에서의 피상전력의 표현)

  • Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2064-2070
    • /
    • 2009
  • According to recent researches, apparent power in a non-sinusoidal single phase system can be represented with geometric algebra. In this paper, the geometric algebra is applied to apparent power defined in a multi-line system having transmission lines with frequency-dependency under non-sinusoidal conditions.

Power Amplifier Design using λ/4 DGS(Defected Ground Structure) Bias Line (λ/4 DGS 바이어스 선로를 이용한 전력증폭기 설계)

  • 정시균;정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.924-931
    • /
    • 2002
  • In this paper, a new λ/4 bias transmission line that is added dumbbell-shaped defected ground structure(DGS) on ground plane of the conventional λ/4 bias transmission line is proposed. This DGS λ/4 bias transmission line maintains high characteristic impedance, but physical width is wider and length is shorter than that of the conventional bias line. If the proposed bias line is attached on signal transmission line, this bias line can reduces the $3^{rd}$ harmonic signal as well as the$2^{nd}$ harmonic signal. With harmonic reduction characteristics, efficiency and linearity of amplifier are improved. The proposed bias line is adopted in power amplifier on IMT-2000 base-station transmitting band. This paper presents several simulations and experimental results of DGS to show validity of the proposed power amplifier using the new λ/4 bias transmission line. Experimental results represent that the $3^{rd}$ harmonic signal is reduced about 26.5 dB and efficiency is improved about 9.1 % and IMD3 is improved 4.5 dB than the conventional structure.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

Application of Point Cloud Data for Transmission Power Line Monitoring (송전선 모니터링을 위한 포인트클라우드 데이터 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.224-229
    • /
    • 2018
  • Korea is experiencing a rapid increase in electricity consumption due to rapid economic development, and many power transmission towers are installed to provide smooth power supply. The high-voltage transmission line is mainly made of aluminum stranded wire, and the wire is loosely guided so that some deflection is maintained. The degree of deflection has a great influence on the quality of the construction and the life of the cable. As the time passes, the shrinkage and expansion occur repeatedly due to the weight of the cable and the surrounding environment. Therefore, periodic monitoring is essential for the management of the power transmission line. In this study, the power transmission lines were monitored using 3D laser scanning technology. The data of the power transmission line of the study area was acquired and the point cloud type 3D geospatial information of the transmission line was extracted through data processing. The length of the transmission line and deflection amount were calculated using the 3D geospatial information of the transmission line, and the distance from the surrounding obstacles could be calculated effectively. The result of study shows the utilization of 3D laser scanning technology for transmission line management. Future research will contribute to the efficiency of transmission line management if a transmission line monitoring system using 3D laser scanning technology is developed.

Problem and Solution of Wind Farm based on Distribution Power system (계통측에서 본 풍력발전단지 도입에 따른 해결과제 및 대책연구)

  • Yoon, G.G.;Park, S.M.;Hyu, E.;Jung, S.B.;Kim, H.P.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.488-490
    • /
    • 2001
  • A dispered power system means a little bit of small power generation equipment located near the power-damend areas. Due to no power supply line, such a power source is very favorable for the decrease in loss of electric power supply, in comparison to the giantly focused power source, Because of small power source, this power source also corresponds promptly to the variation of power demend. On the basis of energy saving, environmental reservation, and utilization of natural or unused energy, solar power plants can be introduced into the residence section of cities and small water or wind-power plants near the urban areas. In case of Korea, some wind farm have been introduced into Cheju island, Condensed introduction of several small power sources into an used distribution line may, however, result in a big problem, it is, therefore, necessary that protective-cooporative plans between power quality and distribution line should be introduced for efficient utilization of KEPCO distribution system.

  • PDF

2.4-GHz Power Amplifier with Power Detector Using Metamaterial-Based Transformer-Type On-Chip Directional Coupler

  • Dang, Trung-Sinh;Tran, Anh-Dung;Lee, Bomson;Yoon, Sang-Woong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.554-557
    • /
    • 2013
  • This letter presents a power amplifier (PA) with an on-chip power detector for 2.4-GHz wireless local area network application. The power detector consists of a clamp circuit, a diode detector, and a coupled line directional coupler. A series inductor for an output matching network in the PA is combined with a through line of the coupler, which reduces the coupling level. Therefore, the coupler employs a metamaterial-based transformer configuration to increase coupling. The amount of coupling is increased by 2.5 dB in the 1:1 symmetric transformer structure and by 4.5 dB from two metamaterial units along the coupled line.

Development of SSSC Power Flow Model and its Implementation into Continuation Power Flow Algorithm (전력조류계산을 위한 SSSC모델의 개발과 연속조류계산 알고리듬에의 적용)

  • Kim, Seul-Ki;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1158-1160
    • /
    • 1999
  • This paper proposes a SSSC(Static Synchronous Series Compensator) power flow model to be incorporated into power flow calculation for the steady state analysis of the power system. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. In this paper the static model is implemented into the continuation power-flow (CPF) program. It is shown that SSSC has its intrinsic superiority over TCSC in controllable power flow range.

  • PDF

Method and implementation for reducing standby power consumption in intermediate capacity power supply with Power Line Communication (전력선통신기능 적용 중.대용량 전원공급장치의 대기전력 절감방법 및 구현)

  • Son, Do-Sun;Kim, Ki-Hyun;Kim, Sang-Cheol;Jeon, Eui-Seok;Lee, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1947-1948
    • /
    • 2008
  • This paper presents the implementation of Power Line Communication(PLC) module which can reduce standby-power consumption. The suggested PLC module consists of PLC modem, coupling circuit, ZCP(Zero-Cross Point) Circuit and main SMPS control relay. The test results under power line communication test-bed used home appliance show the 77% saving of standby-power.

  • PDF

A Development of On-Line Guidance System for Power System (전력 계통 이상 상태 Guidance System 개발)

  • Oh, Seung-Ryle;Baek, Young-Sik;Kim, Jung-Nyun;Han, Moo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.47-49
    • /
    • 2002
  • Recently, the power system has a trend of a sustaining growth in electric power demand with large-sized formation. In this situation, current states can be definitely comprehended to operate security and economic power system. Also, corrective actions must be performed for the violation of bus voltage and line overload. In the security and economy with on-line, It is desirable that the situations of violation are promptly removed to operate power system effectively. This paper deals with the development of application, Kangyang Steel Works' Power System Guidance System, for voltage and overload correction on base case using Generator-Voltage Sensitivity List(GVSL) and Generator Shifter Factor List(GSFL). Also, to show the superiority and economical efficiency of the proposed application, we simulate the Kangyang Steel Works' Power System.

  • PDF