• Title/Summary/Keyword: Power law

Search Result 1,986, Processing Time 0.025 seconds

The Powers and Interim Measures of the Arbitral Tribunal in International Commercial Arbitration (국제상사중재에서 중재판정부의 권한과 임시적 처분에 관한 연구)

  • Lee, Kang-Bin
    • Journal of Arbitration Studies
    • /
    • v.18 no.2
    • /
    • pp.103-127
    • /
    • 2008
  • This paper is to research the powers and interim measures of the arbitral tribunal in the arbitral proceedings of the international commercial arbitration under arbitration legislation and arbitration rules including the UNCITRAL Model Law and Arbitration Rules. The powers of the arbitral tribunal may be found within the arbitration agreement or any arbitration rules chosen by the parties, or the chosen procedural law. The power of the arbitral tribunal to decide its own jurisdiction is one of the fundamental principles of international commercial arbitration. It is a power which is now found in nearly all modern arbitration and rules of arbitration. Where an arbitral tribunal has been appointed then it will usually have the power to proceed with the arbitration in the event that a party fails to appear. It cannot force a party to attend but it may sanction the failure. While the arbitral tribunal can direct the parties to attend and give evidence the arbitral tribunal has no power to compel a party to give evidence. The arbitral tribunal may continue the arbitration in the absence of the party or its failure to submit evidence and make an award on the evidence before it. Under most of arbitration legislation and arbitration rules, the arbitral tribunal has the power to appoint experts and obtain expert evidence. The power to order a party to disclose documents in its possession is a power given to the arbitral tribunal by many national laws and by most arbitration rules. The arbitral tribunal cannot, however, compel disclosure and in the case where a party refuses to disclosure documents then the sanctions that the arbitral tribunal can impose must be ascertained from the applicable rules or the relevant procedural law. A number of arbitration rules and national laws allow for the arbitral tribunal to correct errors within the award. Most of arbitration legislation and arbitration rules permit the arbitral tribunal to grant orders for interim measure of protection. Article 17(1) of the Revised UNCITRAL Model Law of 2006 states: Unless otherwise agreed by the parties, the arbitral tribunal may, at the request of a party, grant interim measures. Interim measures of protection usually take such forms as (1) conservatory measures intended to prevent irreparable damage and maintain the status quo; (2) conservatory measures intended to preserve evidence or assets. Orders for interim measures by the arbitral tribunal are not self-enforcing. However, the arbitral tribunal must have the powers necessary to make interim measures effective. The Article 17 B of the Revised UNCITRAL Model Law of 2006 provides applications for preliminary orders and conditions for granting preliminary orders. And the Article 17 H provides recognition of enforcement of interim measures. In conclusion, the revised articles with regard to interim measures of the UNCITRAL Model Law of 2006 would contribute significantly to the security of the effectiveness of interim measures in international commercial arbitration. Therefore, Korean Arbitration Law and Arbitration Rules would be desirable to admit such revised articles with regard interim measures.

  • PDF

The Study of UCC and 'Power law of Participation' for Web 2.0 Environment (웹 2.0 환경에서 UCC와 참여의 멱함수 법칙에 관한 연구)

  • Kang, Jang-Mook;Moon, Song-Chul
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.325-330
    • /
    • 2008
  • Production and distributon of UCC prepared User of UCC. Power law of participation is available tool for analysis of UCC user. We can devide collective intelligence and collaborative intelligence through power law of participation. We can analyze relation of paticipant and departmentalize type of participation, Power law of participation is available tool for platform design of production and distribution.

  • PDF

Individual-Based Models Applied to Species Abundance Patterns in Benthic Macroinvertebrate Communities in Streams in Response to Pollution

  • Cho, Woon-Seok;Nguyen, Tuyen Van;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.420-443
    • /
    • 2012
  • An Individual-Based Model (IBM) was developed by employing natural and toxic survival rates of individuals to elucidate the community responses of benthic macroin-vertebrates to anthropogenic disturbance in the streams. Experimental models (dose-response and relative sensitivity) and mathematical models (power law and negative exponential distribution) were applied to determinate the individual survival rates due to acute toxicity in stressful conditions. A power law was additionally used to present the natural survival rate. Life events, covering movement, exposure to contaminants, death and reproduction, were simulated in the IBM at the individual level in small (1 m) and short (1 week) scales to produce species abundance distributions (SADs) at the community level in large (5 km) and long (1~2 years) scales. Consequently, the SADs, such as geometric series, log-series, and log-normal distribution, were accordingly observed at severely (Biological Monitoring Working Party (BMWP<10), intermediately (BMWP<40) and weakly (BMWP${\geq}50$) polluted sites. The results from a power law and negative exponential distribution were suitably fitted to the field data across the different levels of pollution, according to the Kolmogorov-Smirnov test. The IBMs incorporating natural and toxic survival rates in individuals were useful for presenting community responses to disturbances and could be utilized as an integrative tool to elucidate community establishment processes in benthic macroin-vertebrates in the streams.

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Space-Stretch Tradeoff Optimization for Routing in Internet-Like Graphs

  • Tang, Mingdong;Zhang, Guoqiang;Liu, Jianxun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.546-553
    • /
    • 2012
  • Compact routing intends to achieve good tradeoff between the routing path length and the memory overhead, and is recently considered as a main alternative to overcome the fundamental scaling problems of the Internet routing system. Plenty of studies have been conducted on compact routing, and quite a few universal compact routing schemes have been designed for arbitrary network topologies. However, it is generally believed that specialized compact routing schemes for peculiar network topologies can have better performance than universal ones. Studies on complex networks have uncovered that most real-world networks exhibit power-law degree distributions, i.e., a few nodes have very high degrees while many other nodes have low degrees. High-degree nodes play the crucial role of hubs in communication and inter-networking. Based on this fact, we propose two highest-degree landmark based compact routing schemes, namely HDLR and $HDLR^+$. Theoretical analysis on random power-law graphs shows that the two schemes can achieve better space-stretch trade-offs than previous compact routing schemes. Simulations conducted on random power-law graphs and real-world AS-level Internet graph validate the effectiveness of our schemes.

A Study on the Pump Performance Analysis by Modifying the Impeller for a Seawater Pump using CFD (임펠러 가공량에 따른 펌프성능의 해석적 연구)

  • Chang, Young Ki;Song, Woo Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • A seawater pumps in the nuclear power plant is responsible for providing cooling water to other components all the time. Because of the depreciation, the seawater pump with current impeller consumes too much power for maintaining the total head. Therefore the objective of this study is to reduce power with maintaining certain the total head by cutting the current impeller. By using a commercial CFD code, FLUENT, the overall performance of seawater pump with current and modified impeller was simulated. Also Affinity law was applied at pumps with various impeller diameter and evaluated the validity of the affinity law. The numerical results show that the pump efficiency is quite irrelevant to the diameters of the impellers and the pump efficiency becomes worse over the designed flow rate. And affinity law result and numerical one show good agreements at small change of impeller diameter. One of the impeller diameters was decided to modify and was applied to the nuclear power plant with the numerical study above.

Application of Particle Size Analysis to Predict the Settleability of CSO Pollutants (입경분포 분석을 활용한 합류식 하수관거 월류수(CSO) 오염물질 침강성 예측)

  • Yoon, Hyun Sik;Lee, Doojin;Park, Young Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.295-302
    • /
    • 2006
  • Over the past decades, a flocculation and/or sedimentation process have been adopted to remove pollutants from CSOs. It has been learned that major factors affecting settlement of pollutants are the particle size distribution, their settling velocities and their specific gravity. It is, therefore, a good idea to analyze the particle size distribution and settleability of CSOs pollutants in order to develop details in designing a process. Discussed in this study are pollutant characteristics of CSOs such as particle size distribution and settleability of pollutants. The power law function is applied and is found to be an effective and reliable index for expressing the particle size distribution of pollutants in CSOs. Based on the regression analysis it is observed that the derived constants of curves representing settling velocity profile are proportional to the initial concentration of particles and to the ${\beta}$-values of power law distributions.

Analysis of Seoul Metropolitan Subway Network Characteristics Using Network Centrality Measures (네트워크 중심성 지표를 이용한 서울 수도권 지하철망 특성 분석)

  • Lee, Jeong Won;Lee, Kang Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.413-422
    • /
    • 2017
  • In this study we investigate the importance of the subway station using network centrality measures. For centrality measures, we have used betweenness centrality, closeness centrality, and degree centrality. A new measure called weighted betweenness centrality is proposed, that combines both traditional betweenness centrality and passenger flow between stations. Through correlation analysis and power-law analysis of passenger flow on the Seoul metropolitan subway network, we have shown that weighted betweenness centrality is a meaningful and practical measure. We have also shown that passenger flow between any two stations follows a highly skewed power-law distribution.

CME mean density and its change from the corona to the Earth

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • Understanding three-dimensional structure and parameters (e.g., radial velocity, angular width, source location and density) of coronal mass ejections (CMEs) is essential for space weather forecast. In this study, we determine CME mean density in solar corona and near the Earth. We select 38 halo CMEs, which have the corresponding interplanetary CMEs (ICMEs), by SOHO/LASCO from 2000 to 2014. To estimate a CME volume, we assume that a CME structure is a full ice-cream cone which is a symmetrical circular cone combined with a hemisphere. We derive CME mean density as a function of radial height, which are approximately fitted to power-law functions. The average of power-law indexes is about 2.1 in the LASCO C3 field of view. We also obtain power-law functions for both CME mean density at 21 solar radii and ICME mean density at 1AU, with the average power-law index of 2.6. We estimate a ratio of CME density to background density based on the Leblanc et al.(1998) at 21 solar radii. Interestingly, the average of the ratios is 4.0, which is the same as a default value used in the WSA-ENLIL model.

  • PDF

Effects of Geometry and Operating Fluid on the Expansion Behavior of Liquid-Solid Fluidized Beds

  • Mohsen Mozafari-Shamsi;Alireza Malooze;Mohammad Sefid;Mostafa Soroor;Ehsan Mehrabi Gohari
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.312-321
    • /
    • 2023
  • Fluidized beds have been widely used in industrial applications, which in most of them, the operating fluid is non-Newtonian. In this study, the combination of the lattice Boltzmann method (LBM) and the smoothed profile method has been developed for non-Newtonian power-law fluids. The validation of the obtained model were investigated by experimental correlations. This model has been used for numerical studying of changing the operating fluid and geometrical parameters on the expansion behavior in liquid-solid beds with both Newtonian and non-Newtonian fluids. Investigations were performed for seven different geometries, one Newtonian, and two non-Newtonian fluids. The power-law index was in the range of 0.8 to 1, and the results for the Newtonian fluidized beds show more porosity than the non-Newtonian ones. Furthermore, increasing the power-law index resulted in enhancing the bed porosity. On the other hand, bed porosity was decreased by increasing the initial bed height and the density of the solid particles. Finally, the porosity ratio in the bed was decreased by increasing the solid particle diameter.