• Title/Summary/Keyword: Power inverter

Search Result 3,963, Processing Time 0.03 seconds

Maximum Efficiency Operation of Three-Level T-type Inverter for Low-Voltage and Low-Power Home Appliances

  • Shin, Seung-Min;Ahn, Jung-Hoon;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.586-594
    • /
    • 2015
  • This paper proposes a maximum efficiency operation strategy for three-level T-type inverter in entire operation areas. The three-level T-type inverter has higher and lower efficiency areas compared with two-level inverter. The proposed strategy aims to operate in the maximum efficiency point for the low-voltage and low-power home appliances. The three-level T-type inverter is analyzed in detail, and the two operation mode selection strategy is developed. The proposed algorithm is verified by theoretical analysis and experimental results.

Regenerative Inverter System for Railway with DC Line Voltage Simulator (직류가선전압 모의장치를 적용한 지하철용 회생인버터 시스템)

  • Ji, Young-Hyok;Cho, Ki-Hyun;Jang, Su-Jin;Won, Chung-Yuen;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1515-1521
    • /
    • 2007
  • In this paper, a unified regenerative inverter system for railway with DC line voltage simulator is proposed. In order to determine the operation characteristics of the regenerative inverter, the DC line voltage simulator is proposed. The DC line voltage simulator, which is based on the AC-DC PWM converter, varies the DC voltage according to the fluctuating voltage which is measured in the actual DC line. The suitable operating point of the regenerative inverter can be estimated from the simulation result. The regenerative inverter operates two modes. When the DC line voltage exceed the operating point, already set up, it works as regenerative inverter to return the excessive power of DC line to the grid. When the DC line voltage is under the operating point, it works as active power filter to compensate harmonic currents. In this paper, the control algorithm of the DC line voltage simulator and that of the regenerative inverter is proposed.

  • PDF

Quasi-Parallel Resonant DC-link Inverter with One Additional Switching Device (하나의 추가 스위칭 소자를 갖는 유사병렬 공진형 DC-link 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 2000
  • A new quasi-parallel resonant DC link inverter is proposed for three phase soft switching application. By i inserting only one additional switch, the proposed inverter excludes both voltage stresses and restricted PWM p problems, which are demerits of the conventional resonant inverter. In this paper, the circuit operations are e explained in detail using the operational mode analysis of the proposed inverter and design methods of the r resonant components are suggest('x:l. Lastly, the applicable possibility of the proposed inverter is vel예fied t through the experimental results.

  • PDF

Output Waveform Improvement of Double-Connected 3-Phase Voltage Source Inverter by Single-Phase Inverter (단상 인버터의 동작에 의한 이중접속 3상 전압원 인버터의 출력파형 개선)

  • 최세완;양승욱
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper proposes a new double-connected 3-phase voltage source inverter with improved output voltage waveform. An auxiliary single-phase inverter injects a ripple voltage into the double-connected inverter to converter 12-step operation to 36-step operation. The KVA rating of the output phase-shifting transformer is reduced by employing a harmonic canceling reactor. The whole rectifier-inverter system including the proposed technique is introduced, and the experimental results are provided.

  • PDF

Development of Static Inverter for European Electric Railway (유럽형 전동차용 보조전원장치 개발)

  • Kim Sangkyun;Kim Ki-Hoon;Lee Hyun-Seok;Lee Kyung-Bok;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.634-639
    • /
    • 2003
  • The static inverter is mainly used to provide with the electric power of various loads in the train. In the recent european projects, the specification of static inverter become harder, and many additional service function is expected. It takes long time and high cost to develope a static inverter with these high performances and additional function. But, these are became general demands for static inverter in the many projects from now on. The APSE(Auxiliary Power Supply Equipment) is a static inverter of high performance to satisfy the severe specification and various service function following these tendency for Athens project In this paper, the specification of APSE and various service functions are introduced to look about current tendencies of static inverter.

  • PDF

Zero-voltage-switching three level auxiliary resonant commutated pole inverter (영전압 스위칭 3-레벨 보조 공진 폴 인버터)

  • 유동욱;원충연;조정구;백주원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.535-542
    • /
    • 1996
  • A zero voltage switching (ZVS) three level auxiliary resonant commutated pole inverter (ARCPI) is presented for high power GTO inverters. The concept of ARCP for two level inverter is extended to the three inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching (ZCS) which enables use of the low cost thyristors. The proposed ARCPI can handle higher voltage and higher power (1-10MVA) comparing to the two level one. Operation and analysis of the ARCPI are illustrated and the features are compared o those of the snubber circuit incorporated three level inverter. Experimental results with 10kW, 4kHz prototype are presented to verify the principle of operation. (author). refs., figs., tab.

  • PDF

Analysis and Design of a Bidirectional Cycloconverter-Type High Frequency Link Inverter with Natural Commutated Phase Angle Control

  • Salam, Zainal;Lim, Nge Chee;Ayo, Shahrin Md.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.677-687
    • /
    • 2011
  • In this paper a cycloconverter-type high frequency transformer link inverter with a reduced switch count is analyzed and designed. The proposed topology consists of an H-bridge inverter at the transformer's primary side and a cycloconverter with three bidirectional switches at the secondary. All of the switches of the cycloconverter operate in non-resonant zero voltage and zero current switching modes. To overcome a high voltage surge problem resulting from the transformer leakage inductance, phase angle control based on natural commutation is employed. The effectiveness of the proposed inverter is verified by constructing s 750W prototype. Experimentally, the inverter is able to supply a near sinusoidal output voltage with a total harmonic distortion of less than 1%. For comparison, a PSpice simulation of the inverter is also carried out. It was found that the experimental results are in very close agreement with the simulation.

A New Current Controlled Inverter with ZVT Switching

  • Lee S. R.;Jeon C. H.;Ko S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.309-313
    • /
    • 2001
  • A single-phase bi-directional inverter with a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is proposed. It is shown that the polarized ramptime current control algorithm, a method that belongs to the family of ZACE(Zero Average Current Error) methods, is a suitable technique to integrate with a typical single-phase ZVT inverter. The proposed current control algorithm is analyzed to design the circuit with auxiliary switch which can operate with ZVT for the main power switch. The simulation results would be shown to verify the proposed current algorithm to turn the main power switch on with ZVT and to operate the inverter bi-directionally

  • PDF

A New Scheme for Maintaining Balanced DC Voltages in Static Var Compensator(SVC) Using Cascade Multilevel Inverter

  • Min, Wan-Ki;Min, Joon-Ki;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.561-565
    • /
    • 2001
  • This paper proposes a new switching scheme of a static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). To improve the un­balanced problem of the DC capacitor voltages, the rotated switching scheme of fundamental frequency is newly used. The optimized fundamental switching pattern with low switching frequency is adapted to be suitable for high application. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion(THD) low in the output voltage of multilevel inverter. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF

A Study On Sing1e-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공전 인버터에 관한 연구)

  • 강진욱;원재선;김동희;조규판;김경식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.287-291
    • /
    • 2002
  • This paper presents active-clamp class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated active-clamp class-E circuit to boost converter with the function of power factor correction. Boost converter is operated in positive and negative half cycle respectively at line frequency(60Hz), Such a operating in discontinuous conduction mode(DCM) of boost converter performs high power factor. By adding active-clamp circuit in class-E inverter, main switch of inverter part is operated not only ZVS(Zero Voltage Switch) but also reduced the switching voltage stress of main switch. This paper shows that simulation result using Psim 4.1 prove the validity of theoretical analysis. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF