• Title/Summary/Keyword: Power generation project

Search Result 176, Processing Time 0.027 seconds

MLOps Technology Trend Supporting Automatic Generation of Neural Network (신경망 자동생성 지원 MLOps 기술 동향)

  • S.T. Kim;C.S. Cho
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.12-20
    • /
    • 2024
  • As more devices are used across various industries and their performance improves, artificial intelligence applications are being increasingly adopted. Hence, the rapid development of neural networks suitable for diverse devices can determine the competitiveness of companies. Machine learning operations (MLOps), which constitute a framework that supports neural network generation and its immediate application to devices, have become necessary for the development of artificial intelligence. Currently, most MLOps are provided by major companies such as Google, Amazon, and Microsoft, which provide cloud services supported by large-scale computing power. In addition, various services are provided by the open-source project Kubeflow. We examine basic concepts and technology trends in MLOps and unveil additional functions required in industry.

Site Development of Offshore Wind Power in Korea - Comparison between Jeju, Buan, and Ulsan (한국의 해상풍력 공간개발정책 비교 연구 - 제주, 부안, 울산을 중심으로)

  • Ryeon-Woo, Kim;Changmo, Ann;Dong-Hyeon, Im;Jibum, Chung;Hyomin, Kim
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.22-37
    • /
    • 2022
  • Large-scale offshore wind power is emerging as a viable solution to achieve carbon neutrality and solve climate change. As power generation complexes require ample space for construction, they create conflicts with residents near the construction site. To resolve the issue with residents, Korea, along with other countries, has developed policies that focus on influencing public perception. However, as the contents of such policies changed several times in a short period in Korea, they were differently applied depending on the timing of the project. This study examines how Korean offshore wind power site development policies, particularly the ones focusing on swaying public perception, were applied differently by regions.

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics (10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.

Development and Validation of an Energy Management System for an Electric Vehicle with a split Battery Storage System

  • Becker, Jan;Schaeper, Christoph;Rothgang, Susanne;Sauer, Dirk Uwe
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.920-929
    • /
    • 2013
  • Within the project 'e performance' supported by the German Ministry of Education and Research (BMBF) an electric vehicle, powered by two lithium-ion battery packs of different capacity and voltage has been developed. The required Energy Management System (EMS) in this system controls the current flows of both packs independently by means of two individual dc-dc converters. It acts as an intermediary between energy storage (battery management systems-BMS) and the drivetrain controller on the vehicle control unit (VCU) as well as the on-board charger. This paper describes the most important tasks of the EMS and its interfaces to the BMS and the VCU. To validate the algorithms before integrating them into the vehicle prototype, a detailed Matlab / Simulink-model was created in the project. Test procedures and results from the simulation as well as experiences and comparisons from the real car are presented at the end.

Development of System Dynamics model for Electric Power Plant Construction in a Competitive Market (경쟁체제 하에서의 발전소 건설 시스템 다이내믹스 모델 개발)

  • 안남성
    • Korean System Dynamics Review
    • /
    • v.2 no.2
    • /
    • pp.25-40
    • /
    • 2001
  • This paper describes the forecast of power plant construction in a competitive korean electricity market. In Korea, KEPCO (Korea Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company in Korea at present time. Fossil power companies are scheduled to be sold to private companies including foreign investors. Nuclear power company is owned and controlled by government. The competition in generation market will start from 2003. ISO (Independence System Operator will purchase the electricity from the power exchange market. The market price is determined by the SMP(System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners such as government are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies such as nuclear and coal plants. Large unclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT(Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investors behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investors behavior can be applied to the new investments for the power plant. Under these postulations, there is the potential for power plant construction to appear in waves causing alternating periods of over and under supply of electricity like commodity production or real estate production. A computer model was developed to sturdy the possibility that construction will appear in waves of boom and bust in Korean electricity market. This model was constructed using System Dynamics method pioneered by Forrester(MIT, 1961) and explained in recent text by Sternman (Business Dynamics, MIT, 2000) and the recent work by Andrew Ford(Energy Policy, 1999). This model was designed based on the Energy Policy results(Ford, 1999) with parameters for loads and resources in Korea. This Korea Market Model was developed and tested in a small scale project to demonstrate the usefulness of the System Dynamics approach. Korea electricity market is isolated and not allowed to import electricity from outsides. In this model, the base load such as unclear and large coal power plant are assumed to be user specified investment and only CCGT is selected for new investment by investors in the market. This model may be used to learn if government investment in new unclear plants could compensate for the unstable actions of private developers. This model can be used to test the policy focused on the role of unclear investments over time. This model also can be used to test whether the future power plant construction can meet the government targets for the mix of generating resources and to test whether to maintain stable price in the spot market.

  • PDF

Enhanced Geothermal System Case Study: The Soultz Project (EGS 지열발전 연구사례: The Soultz Project)

  • Lee, Tae Jong;Song, Yoonho
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.561-571
    • /
    • 2013
  • Various experiences on enhanced geothermal system (EGS) has been accumulated from the Soultz project through various scientific experiments and research activities for more than 20 years since it started in the year of 1984 until the 1.5 MW Organic Rankine Cycle (ORC) binary power plant has been built up in Soultz-sous-$\hat{e}$ area, France. They have been applied to Cooper basin in Australia, Landau and Insheim in Germany and so forth. This report summaries the experiences from Soultz in the aspect of artificial reservoir creation, expecting to be helpful for reducing any trial and errors or unnecessary expenses in ongoing Korean EGS project in Pohang area, where the geological features are similar to Soultz area.

Analysis on the Trade-off between an Hydro-power Project and Other Alternatives in Myanmar

  • Aye, Nyein Nyein;Fujiwara, Takao
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.31-57
    • /
    • 2019
  • Myanmar's current power situation remains severely constrained despite being richly endowed in primary energy sources. With low levels of electrification, the demand for power is not adequately met. Cooperation in energy has been a major focus of future initiative for all developed and developing nations. If we want to solve climate change, and change our energy infrastructure, we need to be innovative and entrepreneurial in energy generation. This paper will help us in examining Bayesian MCMC Analysis for the parameters estimation among the arrival rates of disaster occurrences, firm's expected income-based electricity tariffs, and estimated R&D investment expenses in new energy industry. Focusing on Japan's electric power business, we would like to search the potential for innovative initiatives in new technological energy industry for the regional development and ecological sustainability in Myanmar.

Human resource planning for authorized inspection activity

  • Lee, Seung-hee;Field, Robert Murray
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.618-625
    • /
    • 2019
  • When newcomer countries consider a nuclear power programme, it is recognized that the most important organizations are the Nuclear Energy Programme Implementing Organization (NEPIO), the regulator, and an operating organization. Concerning the number of construction delays these days, one of the essential organizations is an Authorized Inspection Agency (AIA). According to World Nuclear Industry Status Report, all of the reactors under construction in eight out of the thirteen countries have experienced delays. Globally, the Flamanville 3 project and Sanmen Unit 1 are 6.5 years and 5 years late respectively. One of the major reasons of delay is due to inappropriate manufacturing and inspection on safety class components. The recommendations are made to develop such an organization: (i) find existing inspection organizations in relevant industries, (ii) contract with expatriates who have experience on nuclear inspection, (iii) develop a legislative framework to authorize the inspection organization with enforcement, (iv) include a contract clause in the BIS for developing the AIA, (v) hold training programmes from vendor country, (vi) during manufacturing and construction, domestic AIA shall be involved.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF