• 제목/요약/키워드: Power generation forecast

검색결과 86건 처리시간 0.026초

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델 (Short Term Forecast Model for Solar Power Generation using RNN-LSTM)

  • 신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권3호
    • /
    • pp.233-239
    • /
    • 2018
  • 태양광 발전은 기상 상태에 따라 간헐적이기 때문에 태양광 발전의 효율과 경제성 향상을 위해 정확한 발전량 예측이 요구된다. 본 연구는 목포 기상대에서 예보하는 기상 데이터와 영암 태양광 발전소의 발전량 데이터를 이용하여 태양광 발전량 단기 딥러닝 예측모델을 제안하였다. 기상청은 기온, 강수량, 풍향, 풍속, 습도, 운량 등의 기상요소를 3일간 예보한다. 그러나 태양광 발전량 예측에 가장 중요한 기상요소인 일조 및 일사 일사량 예보하지 않는다. 제안 모델은 예보 기상요소를 이용하여, 일조 및 일사 일사량을 예측 하였다. 또한 발전량은 기상요소에 예측된 일조 및 일사 기상요소를 추가하여 예측하였다. 제안 모델의 발전량 예측 결과 DNN의 평균 RMSE와 MAE는 0.177과 0.095이며, RNN은 0.116과 0.067이다. 또한, LSTM은 가장 좋은 결과인 0.100과 0.054이다. 향후 본 연구는 다양한 입력요소의 결합으로 보다 향상된 예측결과를 도출할 수 있을 것으로 기대된다.

변형된 다세대 Lotka-Volterra 모형을 적용한 IMT-2000 가입자 수요예측 (Forecasting of IMT-2000 Market Size using Modified Multi-generation Lotka-Volterra Model)

  • 김윤배;김재범;이희상
    • 산업공학
    • /
    • 제14권1호
    • /
    • pp.54-58
    • /
    • 2001
  • In this study, we suggest a multi-generation Lotka-Volterra model, which is a competition model using game theory and complex system theory. The suggested model shows many improvements to weakness of a well known Bass model to forecast new technology in competitive markets. We show that the Lotka-Volterra model has strong power to forecast mobile communication services when it is used for competition of 1st generation mobile phone service and 2nd generation phone service in Korea. We finally use the model to forecast IMT-2000 service, the 3rd generation mobile communication service.

  • PDF

전력산업 구조개편 이후 전원구성비율 예측에 관한 연구 (A Study on Forecating of Electric Power Generation Mix in the Competitive Electricity Market)

  • 홍정석;곽상만;권병훈;나기룡;최기련
    • 한국시스템다이내믹스학회:학술대회논문집
    • /
    • 한국시스템다이내믹스학회 2003년도 하계학술대회발표논문집
    • /
    • pp.49-81
    • /
    • 2003
  • It is one of the important problems how to maintain the optimal electric power generation mix. The Objective of this study is development of a computer model which can be used to forecast the investment of power generation unit by the plant owners after restructuring the electricity industry. The impacts of the various government policies can be analyzed using the computer model, thus the government can formulate effective policies for achieving the desired electric power generation mix.

  • PDF

Micro-Grid 시스템에서 Peak-Shaving을 이용한 PV+ 시스템의 최적 운영 방법 (Optimal Operating Method of PV+ Storage System Using the Peak-Shaving in Micro-Grid System)

  • 이지환;이강원
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.1-13
    • /
    • 2020
  • There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering "demand spike" during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.

수치 예측 알고리즘 기반의 풍속 예보 모델 학습 (Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm)

  • 김세영;김정민;류광렬
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.19-27
    • /
    • 2015
  • 대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.

전력수급기본계획의 불확실성과 CO2 배출 목표를 고려한 발전용 천연가스 장기전망과 대책 (Scenario Analysis of Natural Gas Demand for Electricity Generation in Korea)

  • 박종배;노재형
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1503-1510
    • /
    • 2014
  • This study organizes scenarios on the power supply plans and electricity load forecasts considering their uncertainties and estimates natural gas quantity for electricity generation, total electricity supply cost and air pollutant emission of each scenario. Also the analysis is performed to check the properness of government's natural gas demand forecast and the possibility of achieving the government's CO2 emission target with the current plan and other scenarios. In result, no scenario satisfies the government's CO2 emission target and the natural gas demand could be doubled to the government's forecast. As under-forecast of natural gas demand has caused the increased natural gas procurement cost, it is required to consider uncertainties of power plant construction plan and electricity demand forecast in forecasting the natural gas demand. In addition, it is found that CO2 emission target could be achieved by enlarging natural gas use and demand-side management without big increase of total costs.

불확실한 부하곡선에 대한 발전기 기동정지계획 (Unit Commitment for an Uncertain Daily Load Profile)

  • 박정도;박상배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권6호
    • /
    • pp.334-339
    • /
    • 2004
  • In this study, a new UC (Unit Commitment) algorithm is proposed to consider the uncertainty of a daily load profile. The proposed algorithm calculates the UC results with the lower load level than the one generated by the conventional load forecast and the more hourly reserve allocation. In case of the worse load forecast, the deviation of the conventional UC solution can be overcome with the proposed method. The proposed method is tested with sample systems, which shows that the new UC algorithm yields completely feasible solution even though the worse load forecast is applied. Also, the effects of the uncertain hourly load demand are statistically analyzed especially by the consideration of the average over generation and the average under generation. Finally, it is shown that independent power producers participating in electricity spot-markets can establish bidding strategies by means of the statistical analysis. Therefore, it is expected that the proposed method can be used as the basic guideline for establishing bidding strategies under the deregulation power pool.

풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계 (Design of short-term forecasting model of distributed generation power for wind power)

  • 송재주;정윤수;이상호
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.211-218
    • /
    • 2014
  • 최근 풍력에너지는 풍력터빈의 지능화뿐만 아니라 풍력 발전량 예측 부분에서 컴퓨팅과의 결합이 확대되고 있다. 풍력 발전은 기상상태에 따라 출력변동이 심하고 출력 예측이 어려워 효율적인 전력 생산을 위해서 신재생에너지를 전력계통에 안정적으로 연계할 수 있는 기술이 필요하다. 본 논문에서는 분산형 전원의 예측정보를 향상시켜 예측한 발전량과 실제 발전량의 차이를 최소화하기 위한 분산형 전원전력의 단기예측 모델을 설계한다. 제안된 모델은 단기 예측을 위해서 물리모델과 통계모델을 결합하였으며, 물리모델에서 생산된 격자별 예측값 중 예측 지점내 예측지점의 값을 추출하고, 물리 모델 예측값에 통계모델을 적용하여 발전량 산정을 위한 최종 기상 예측값을 생성한다. 또한, 제안 모델에서는 실시간 기상청 관측자료와 실시간 중기 예측 자료를 입력 자료로 사용하여 단기 예측모델을 수행한다.

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF