• 제목/요약/키워드: Power conversion module

검색결과 180건 처리시간 0.022초

옥외 관측을 통한 EVA, POE PV모듈의 열화 연구 (Outdoor Testing and Degradation of EVA and POE Encapsulated Photovoltaic Modules)

  • 김제하
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.847-852
    • /
    • 2016
  • Using both EVA and POE encapsulants, we fabricated polycrystalline Si PV modules and performed a set of reliability tests of PID, DH, TC, and Complex prior to outdoor installation. The power output with temperatures and insolation as well as I-V characteristics had been monitored under outdoor environments for 18 months. In the entire period, the total power of 3,576 kWh from POE PV modules was observed larger than 3,449 kWh from EVA PV modules by 3.5%. All the PV modules showed a 5.6~9.2% drop in the conversion efficiency. As for the solar power generation, the PV modules performed through PID, TC test revealed distinct difference in between EVA and POE for which the POE PV module produced more power by +11.4% and +6.6%, respectively, as measured in the 18th month. In addition, POE was proved to protect better the solar cells under PID influence.

가로-세로 비율에 따른 염료감응형 태양전지의 최적 조건 도출 및 모듈 제조 (The Deduction of the Optimal Length to Width Ratio of Dye-sensitized Solar Cell and the Fabrication of a Module)

  • 김희제;박성준;최진영;서현웅;김미정;이경준;손민규
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.100-106
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-sensitized Solar Cells (DSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6\;cm$ and an active area $8\;cm^2$ ($4.62{\times}1.73\;cm$) which attained a conversion efficiency of 4.02%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. Surface morphology and sheet resistance of Pt counter electrode did not degrade the performance of the cell. This novel 8V-0.33A DC power source shows stable performance with an energy conversion efficiency of 4.24% under 1 sun illumination (AM 1.5, Pin of $100\;mW/cm^2$).

건물 부착형 고경량 유연성 슁글드 태양광 모듈 (Fabrication of Lightweight Flexible c-Si Shingled Photovoltaic Modules for Building-Applied Photovoltaics)

  • 김민섭;박민준;신진호;이은비;정채환
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.107-110
    • /
    • 2022
  • Lightweight and flexible photovoltaic (PV) modules are attractive for building-integrated photovoltaic (BIPV) applications because of their easy construction and applicability. In this study, we fabricated lightweight and flexible c-Si PV modules using ethylene tetrafluoroethylene (ETFE) front cover and shingled design string cells. The ETFE front cover instead of glass made the PV modules lighter in weight, and the shingled design string cells increased the flexibility. Finally, we fabricated a PV module with a conversion power of 240.08 W at an area of 1.25 m2 and weighed only 2 kg/m2. Moreover, to check the PV module's flexibility, we conducted a bending test. The difference of conversion power between the modules before and after bending shown was only 1.7 W, which showed a power reduction rate of about 0.7%.

해상풍력발전의 HSE 관리를 위한 모델기반 HSE 위험성 평가 모듈 개발 및 평가 (Development and evaluation of a model-based HSE risk assessment module for HSE management in offshore wind power)

  • 김성래;남건우;이태경;강대영;김준영
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.74-91
    • /
    • 2023
  • This study provides an in-depth comparison and analysis of various risk assessment models widely used in modern industries, and proposes the most suitable model for risk assessment of offshore wind power in Korea. The assessment models were selected by considering various factors such as the purpose of risk assessment, stakeholder requirements, and characteristics of offshore wind power. We also emphasized the importance of using different risk assessment models in combination in situations of high uncertainty. To systematize the combination of risk assessment models, we used systems engineering which is effective to develop a new system. Systems engineering was used to define the complete, traceable functions from site requirements, and model-based systems engineering was used to manage the design information from requirements to detailed functions in a single model. The developed risk assessment module provide automatic conversion between risk assessment models to enable risk assessment suitable for offshore wind power. The functionality and usability of the offshore wind risk assessment module were verified by the evaluation of three wind power experts.

경량화 태양광 모듈의 내구성 보완에 관한 연구 (A Study on the Durability Complement of Lightweight Photovoltaic Module)

  • 정태웅;박민준;김한준;송진호;문대한;홍근기;정채환
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

모듈형 파워 서플라이를 이용한 철도 신호용 전원장치 (A Railway signal power supply system using the module type power supply)

  • 노성채;이유경;김수홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.836-842
    • /
    • 2005
  • This paper presents a power supply of railway signal system using a Z-source inverter. The Z-source inverter overcomes the conceptual and theoretical barriers and limitations of the tradition voltage-source inverter and current-source inverter and provides novel power conversion concept. The Z-source inverter is a Buck-Boost inverter that has a wide range of obtainable voltage.

  • PDF

단위 DSC셀의 직병렬 연결을 통한 소형 배터리 충전특성에 관한 연구 (A study of small size battery charging characteristic by serial-parallel connected DSC module)

  • 홍지태;최진영;서현웅;김미정;심지영;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.192-194
    • /
    • 2006
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells(DSC), compared with conventional Si solar cells. DSC modules still need the larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, using batteries backup systems, the measured data shows that DSCs gathered over 12% more electricity than Si solar cells of the same rated output power in same outdoor condition. Moreover, battery charging time of DSC is about 1 hour faster than same rate of Si solar module. In this paper, 12 single DSC cells prepared for 4 serialized DSC cells was connected in 3 row parallel which have same output power rate of Si solar module. This DSC module was practiced generating characteristic experiment over outdoor daylight condition and applied with PV battery charger by using DC-DC converter. The main advantages of DSC module battery charger as compared with conventional Si solar module one are shorter charge time and lower cost.

  • PDF

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Design and Analysis of SEPIC Converter Based MPPT for Solar PV Module with CPWM

  • Maglin, J.R.;Ramesh, R.;Vaigundamoorthi, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1269-1276
    • /
    • 2014
  • The main objective of this paper is to design DC-DC MPPT circuit using chaotic pulse width modulation to track maximum power from solar PV module for space application. The direct control method of tracking is used to extract maximum power. The nominal duty cycle of the main switch of DC-DC SEPIC converter is adjusted so that the solar panel output impedance is equal to the input resistance of the SEPIC converter which results better spectral performance in the tracked voltages when compared to conventional PWM control. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme

Control of Parallel Connected Three-Phase PWM Converters without Inter-Module Reactors

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.116-122
    • /
    • 2015
  • This paper presents a new current sharing control strategy for parallel-connected, synchronised three-phase DC-AC converters employing space vector pulse width modulation (SVPWM) without current sharing reactors. Unlike conventional control methods, the proposed method breaks the paths of the circulating current by dividing the switching cycle evenly between parallel connected equally rated converters. Accordingly, any inter-module reactors or circulating current control will be redundant, leading to reductions in system costs, size, and control algorithm complexity. Each converter in the new scheme employs a synchronous dq current regulator that uses only local information to attain a desired converter current. A stability analysis of the current controller is included together with a simulation of the converter and load current waveforms. Experimental results from a 2.5kVA test rig are included to verify the proposed control method.