• Title/Summary/Keyword: Power control Efficiency

Search Result 2,469, Processing Time 0.041 seconds

Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition (실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • Go, Yu-Ran;Park, Hyeon-Cheol;Zhu, Yaqiong;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

Collision Avoidance Power Control of Carrier Sensing Zone for Energy Efficiency in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율을 위한 반송파 감지지역의 충돌방지 전력제어)

  • Kim, Chang-Bok;Kim, Nam-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • In Wireless Sensor Networks, IEEE 802.11 happen unnecessary energy consume because of packet transmission using maximum power between sensor node. The BASIC scheme is to use maximum transmission power for RTS-CTS and minimum required transmission power so as to high energy efficiency for DATA-ACK. However BASIC scheme may degrade network throughput with collision of ACK packet by node in carrier sensing zone and may result in higher energy consumption than when using IEEE 802.11 without power control. Existing PCM(Power Control MAC) scheme is to use DATA packet transmission method by periodically maximum power level so as to sensing DATA packet transmit in carrier sensing zone of transmission node, and this method can avoid collision of ACK packet. This paper present problem by energy efficiency of PCM scheme, and design some more improved PCM scheme.

High Gain and High Efficiency Class-E Power Amplifier Using Controlling Drain Bias for WPT (드레인 조절회로를 이용한 무선전력전송용 고이득 고효율 Class-E 전력증폭기 설계)

  • Kim, Sanghwan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.41-45
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented by using a drain bias control circuit operated at low input power for WPT(Wireless Power Transfer). Adaptive bias control circuit was added to high-efficiency class-E amplifier. It was possible to obtain the overall improvement in efficiency by adjusting the drain bias at low input power. The proposed adaptive class-E amplifier is implemented by using the input and output matching network and serial resonant circuit for improvement in efficiency. Drain bias control circuit consists of a directional coupler, power detector, and operational amplifier for adjusting the drain bias according to the input power. The measured results show that output powers of 41.83 dBm were obtained at 13.56 MHz. At this frequency, we have obtained the power added efficiency(PAE) of 85.67 %. It was confirmed increase of PAE of an average of 8 % than the fixed bias from the low input power level of 0 dBm ~ 6 dBm.

A Study on a Power Control System of Observation Equipment for Undersea Resources (해저자원 관측장비를 위한 전력제어시스템 개발)

  • Kim, Yeong-Jin;Jo, Yeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.427-428
    • /
    • 2008
  • In order to probe such mineral resources, AUVs (Autonomous Underwater Vehicles) have been used instead of ROVs (Remotely-Operated Vehicles) that are not suitable to probe submarine resources distributed over a wide area. However, the power consumption of AUVs needs to be reduced as they are operated by batteries. In controlling the power of underwater vehicles, the efficiency of batteries and their capacity have been heightened. This study aimed at developing a power control system suitable to the prober for submarine mineral resources. As a result, power was reduced as compared to the non-control system and the prober could explore the seabed longer than usual.

  • PDF

A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator (PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발)

  • Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.

Simulator Development of 1000MW Class Ultra Super Critical Coal-Fired Power Plant with Advanced Process Control Algorithm (고급공정제어 알고리즘을 이용한 1000MW급 차세대화력발전소 시뮬레이터 개발)

  • Oh, Ki-Yong;Lim, Geon-Pyo;Kim, Ho-Yol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1817-1818
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant components. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control in that pressure within safety guideline that many unexpected phenomena are happen because that region is highly nonlinear region. In this paper, Advanced process control algorithm, ARX and Fuzzifier, is introduced. Then power plant control logics applied Unit Step Optimizer, which is combination of ARX and Fuzzifier are proposed. Its performance is tested and analyzed with design guide line.

  • PDF

On-Line Optimal Efficiency Control for Permanent Magnet Synchronous Motors Driving electric Vehicles (전기자동차 구동용 영구자석형 동기전동기의 온라인 최적 효율제어)

  • Chun, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.586-593
    • /
    • 1994
  • This paper suggests the algorithm for on-line efficiency control of permancent magnet synchronous motors driving the electric vehicles. The existance of unigue d-axis current is verified, which generates the maximum efficiency at operating points of motor. Using the Fibonacci search method, d-axis current converges to the minimization of inverter input power, and to prevent the variation of motor speed in process of the efficiency control, the voltage decoupled control strategy is introduced. Through the experiments, the effects of an efficiency control algorithm are verified.