• Title/Summary/Keyword: Power control

Search Result 18,344, Processing Time 0.04 seconds

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

DC Power Control for 3-Level Converter. (3-레벨 컨버터에 의한 직류전력제어)

  • 정연택;이사영;함년근
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.126-129
    • /
    • 1996
  • This paper study on the control method of 3-level converter. The control of converter is composed of active power control for controlling a output voltage and of reactive power control for high power factor drives. And also, output central voltage is controlled by sensing a each condensor voltage of bank connected the part of dc.

  • PDF

Coordinated Control Strategies with and without Circulating Current in Unified Power Quality

  • Feng, Xing-tian;Zhang, Zhi-hua
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1348-1357
    • /
    • 2015
  • Under traditional unified power quality conditioner (UPQC) control, a UPQC series converter (SC) is mainly used to handle grid-side power quality problems while its parallel converter (PC) is mainly used to handle load-side power quality problems. The SC and PC are relatively independent. The SC is usually in standby mode and it only runs when the grid voltage abruptly changes. In this paper, novel UPQC coordinated control strategies are proposed which use the SC to share the reactive power compensation function of the PC especially without grid-side power quality problems. However, in some cases, there will be a circulating current between the SC and the PC, which will probably influence the compensation fashion, the compensation capacity, or the normal work of the UPQC. Through an active power circulation analysis, strategies with and without a circulating current are presented which fuses the reactive power allocation strategy of the SC and the PC, the composite control strategy of the SC and the compensation strategy of the DC storage unit. Both of the strategies effectively solve the SC long term idle problem, limit the influence of the circulating current, optimize all of the UPQC units and reduce the production cost. An analysis, along with simulation andexperimental results, is presented to verify the feasibility and effectiveness of the proposed control strategies.

Power Control Algorithm with Finite Strategies: Game Theoretic Approach (게임이론을 이용한 유한 전략 집합을 갖는 전력제어 알고리즘)

  • Kim, Ju-Hyup;Jang, Yeon-Sik;Lee, Deok-Joo;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2009
  • The purpose of this paper is to analyze the power control problem in wireless communications with game theoretic approach. The major contribution of the present paper is that we formulated the problem as a game with a finite number of strategies while most of the previous game theoretic power control literatures modeled with continuous game in which there are infinite number of strategies. It should be noted that the closed-loop power control would be performed in a discrete manner, power up or down from the present level of power with fixed power control step size. We model the current closed-loop power control scheme with the famous Prisoner's dilemma model and show that the power-up strategy is Nash equilibrium. That is, every mobile tries to increase their power and approach to their maximal power. Thus, the outcome of current power control (Nash equilibrium) is inefficient. In order to attain efficient power control for the environment where ICI(Inter-Cell Interference is severe, we developed a new payoff function in which the penalty mechanism is introduced and derived conditions under which power-down becomes Nash equilibrium strategy for all players. Furthermore we examined the trajectory of equilibrium power when the power control game will be played repeatedly.

  • PDF

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

Configuration of a Boiler Control System in Thermal Power Plant (화력 발전소 보일러 제어 시스템의 구성에 관한 연구)

  • 변승현;박두용;김병철;신만수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.168-168
    • /
    • 2000
  • In this paper, a boiler control system for thermal power plant is configured. The boiler control system for thermal power plant is largely composed of an ABC(Automatic Boiler Control) system and a MBC(Mill Burner Control) system. ABC system controls analog process values, so almost all analog control logic is dealt with in ABC system. On the other hand, MBC system relates to sequence control logic such as MFT logic, Furnace Purge, Safety related logic. Advanced control systems made from advanced countries deal with an ABC system and MBC system in a distributed control system. In this paper, we adopt a DCS as an ABC system and adopt a PLC system as a MBC system to configure a boiler control system for thermal power plant using domestic control system. Finally the validity of the configured boiler control system is shown via simulation using digital simulator for boiler system in thermal power plant.

  • PDF

Digital Power Control of LLC Resonant Inverter for Microwave Oven (전자레인지용 LLC 공진형 인버터의 디지털 출력 제어)

  • Kang, Kyelyong;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2017
  • This paper proposes a digital power control of the LLC resonant half-bridge inverter for high power microwave oven application. Conventional half-bridge inverter for driving a microwave oven uses a hardware-based power control method which varies the frequency according to the AC source voltage. In this case, it is difficult to control the output power according to the variation of the load status of magnetron. The proposed power control consists of an instantaneous current generator and a current controller. Instantaneous current generator makes an instantaneous current reference from power command using input voltage information. Current controller controls input current which has an information of status of magnetron. The proposed power control does not require any compensation algorithm for the change of the load status of the magnetron and change of input voltage. The validity of the proposed method for the control of the change of input voltage and frequency is verified by both simulation and experiment.

Research on the Power Sharing Control and Stability of VSGs

  • Xie, Dong;Zang, Da-Jin;Gao, Peng;Wang, Jun-Jia
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.542-550
    • /
    • 2017
  • Aiming at the deficiencies of power sharing control performances when a traditional droop control is adopted for microgrid inverters, this paper proposes a microgrid inverter power sharing control strategy based on a virtual synchronous generator. This control method simulates the electromechanical transient characteristics of a synchronous generator in a power system by an ontology algorithm and the control laws of a synchronous generator by control over the speed governor and excitation regulator. As a result, that the microgrid system is able to effectively retain the stability of the voltage and frequency, and the power sharing precision of the microgrid inverter is improved. Based on an analysis of stability of a microgrid system controlled by a virtual synchronous generator, design thoughts are provided for further improvement of the power sharing precision of inverters. The simulation results shows that when the virtual synchronous generator based control strategy was adopted, the power sharing performances of microgrid inverters are improved more obviously than those using the droop control strategy.