• Title/Summary/Keyword: Power coefficient

Search Result 2,618, Processing Time 0.026 seconds

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Sensitivity Analysis for Natural Frequency of Torsional Shafting with Constant Cross Section Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 일정 단면을 갖는 비틀림 축계의 고유진동수 민감도 해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2012
  • In this paper, the authors formulate the sensitivity analysis algorithm for the natural frequency of a torsional shafting by expanding the transfer stiffness coefficient method. The basic concept of the present algorithm is based on the transfer of sensitivity stiffness coefficient, which is the derivative of stiffness coefficient with respect to design parameter, at every node from the first node to the last node in analytical model. The effectiveness of the present algorithm is confirmed by comparing the results of the sensitivity analysis and those of the reanalysis for the natural frequencies of a torsional shafting with a constant cross section. In numerical calculation, the design parameter is the diameter of the shaft element of the torsional shafting.

Dynamic Response Analysis of Cylindrical Shell with Axisymmetric Loading (축대칭 하중을 받는 원통형 셸의 동적응답 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.33-39
    • /
    • 2013
  • It is very important to analyze the dynamic responses of the shell structures from the viewpoint of the design of shell structures with a variety of axisymmetric loadings. In this paper, the computational algorithm for the dynamic response analysis of an cylindrical shell with axisymmetric loading is formulated by the transfer mass coefficient method based on the transfer of mass coefficient. After the computational programs for obtaining the dynamic responses of cylindrical shells with axisymmetric loading are made by the transfer mass coefficient method and the finite element method, the computational results by both methods are compared. From the computational results, we can confirm that the transfer mass coefficient method has the effectiveness in the dynamic response analyses of cylindrical shells with a variety of axisymmetric loadings.

Variable Coefficient Inductance Model-Based Four-Quadrant Sensorless Control of SRM

  • Kuai, Song-Yan;Li, Xue-Feng;Li, Xing-Hong;Ma, Jinyang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1243-1253
    • /
    • 2014
  • The phase inductance of a switch reluctance motor (SRM) is significantly nonlinear. With different saturation conditions, the phase inductance shape is clearly changed. This study focuses on the relationship between coefficient and current in an inductance model with ignored harmonics above the order of 3. A position estimation method based on the variable coefficient inductance model is proposed in this paper. A four-quadrant sensorless control system of the SRM drive is constructed based on the relationship between variable coefficient inductance and rotor position. The proposed algorithms are implemented in an experimental SRM test setup. Experimental results show that the proposed method estimates position accurately in operating two/four-quadrants. The entire system also has good static and dynamic performance.

Effect on Coefficient of Subgrade Reaction on Dynamic responses of Buried Pipelines (지중매설관로의 동적응답에 미치는 지반반력계수의 영향)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Kang, Hyo-Sub
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We have examined the effect of values of subgrade reaction coefficient on the dynamic responses(displacement and strain responses) of the buried concrete pipeline of which the end boundary condition is the fixed ends. We have carried out the dynamic analysis of mode superposition method with representative values of coefficient of subgrade reaction applicable to the classified rock masses. We have found that the effect of subgrade reaction coefficient on the dynamic responses of the pipeline appears noticeable for the seismic waves having relatively high frequency and low apparent propagation velocity.

Effects of Microstructure on Thermoelectric Properties of $FeSi_2$

  • Park, Joon-Young;Song, Tae-Ho;Lee, Hong-Lim;Pai, Chul-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The variation of electrical conductively and Seebeck coefficient of FeSi2 according to the density of the specimen has been observed over the temperature range 50 to $700^{\circ}C$. A conventional pressureless sintering method with various sintering time (0, 0.5, 1, 5h) at $1190^{\circ}C$ and/or various sintering temperatures(1160, 1175, 1190, $1200^{\circ}C$) for 2 h was carried out to prepare $FeSi_2$ specimens having various densities. The relationship between the electrical conductivity and Seebeck coefficient was investigated after two steps of annealing (at $865^{\circ}C$ and then $800^{\circ}C$ for total 160h) and thermoelectric measurement. The electrical conductivity for the specimens showed a typical tendency of semiconductor, the average activation energy of which in the intrinsic region (above $300^{\circ}C$) was observed approximately as 0.452 eV, and increased slightly with density. On the other hand, the specimen of the lower density showed the higher value of Seebeck coefficient in the intrinsic region. As the temperature fell into the non-degenerate region, the highly densified specimen which had relatively little residual metal phase showed the higher value of Seeback coefficient. The power factor of all specimens showed the optimum value at $200^{\circ}C$. However, the power factor of the specimen of the lower density increased again from $400^{\circ}C$ and that of the higher dense specimen increased from $500^{\circ}C$. The power factor was more affected by Seebeck coefficient than electrical conductivity over all temperature range.

  • PDF

Heat Transfer and Pump Consumption Power of Indirect Refrigeration System Using CO2 as a Secondary Refrigerant (2차 냉매로서 CO2를 사용하는 간접 냉동시스템의 열전달과 펌프 소비동력)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Yi, Wen-Bin
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, the heat transfer coefficient and pump consumption power of indirect refrigeration system using $CO_2$ as a secondary refrigerant were investigated experimentally. First, from the comparison of pump consumption powers of existing brines(EG, PG, EA etc.) and $CO_2$ as secondary refrigerants at the same experimental conditions, PG and $CO_2$ show the highest and lowest power, respectively. Second, the heat transfer coefficient of $CaCl_2$ is the highest, but PG is the lowest among other secondary refrigerants. From the above results, it is confirmed that $CO_2$ as the secondary refrigerant has excellent characteristics when comparing to existing brines. Thus, it is concluded that $CO_2$ is applicable as the secondary refrigerant of indirect refrigeration system.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

Performance Analysis of Magnetic Power Pads for Inductive Power Transfer Systems with Ferrite Structure Variation

  • Kim, Minkook;Byun, Jongeun;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1211-1218
    • /
    • 2017
  • In this paper, performance of rectangular shaped magnetic power pads for inductive power transfer (IPT) system according to ferrite structure is analyzed. In order to evaluate the influences of ferrite structure, six cases of magnetic power pads are proposed. Self-inductance, coupling coefficient, quality factor, and coil to coil efficiency are compared as the displacement increases in the direction of x or y axis. For accurate estimation, finite element method (FEM) simulation is used and loss components of the power pads are numerically calculated and considered. Through the simulation and measured results, effectiveness of protrusive and enveloping ferrite structure is identified.