• 제목/요약/키워드: Power closed-loop control

검색결과 265건 처리시간 0.028초

도시환경에서 적응전력제어를 이용한 이동국 속도추정 (Mobile Target Speed Estimation in Urban Environments with Adaptive Power Control)

  • 이현철;이종태;유상범;강은수
    • 한국위성정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.46-50
    • /
    • 2016
  • The adaptive power control of Code Division Multiple Access (CDMA) systems for communications between User Equipments (UEs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate which has distance information is applied to three inner loop power control algorithms. The speed estimation performances of these algorithms with their consecutive Transmit-Power-Control (TPC) ratios are compared to each other, and it is concluded that the speed can be estimated using the TPC ratio information of Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC) and Fixed Step-size Power Control (FSPC).

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

슬라이딩 모드 관측기를 이용한 IPMSM의 센서리스 제어의 기동특성에 관한 연구 (A Study on Startup-Characteristic of Sensorless Controlled IPMSM Employing Sliding Mode Observer)

  • 김상훈;권순재;김만고;정영석
    • 전력전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.38-43
    • /
    • 2011
  • 본 논문에서는 슬라이딩 모드 관측기를 이용하여 IPMSM(Interior Permanent Magnet Synchronous Motor)의 센서리스 제어의 기동특성에 관한 연구를 수행하였다. 역기전력을 추정하는 센서리스 제어 방식은 초기 구동 시 회전자의 위치를 알 수가 없으므로 Open-Loop알고리즘을 이용하여 강제로 모터를 구동시킨다. 이 방법은 Open-Loop에서 Closed-Loop로 제어되는 시점에 부하의 상태에 따라 기동 특성이 변하는 문제점이 발생 할 수 있다. 본 논문에서는 부하에 따라 기동 특성에서 야기되는 문제점을 검토하고 그 해결책을 제시한다. 제시된 방법은 6극 600W급 IPMSM을 이용하여 시뮬레이션과 실험을 통해 검증한다.

분산형 전원 시스템용 승압형 컨버터의 제어 루우프 설계 (Designing the Control Loop of a Boost Converter for Distributed Power Applications)

  • 김재열;최병조;안태영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1068-1070
    • /
    • 2000
  • This paper presents a method of designing the control loop for dc-to-dc converters when at characteristics of the converter's load are unknown. In the proposed method, a converter is considered as a stand-alone module that feeds a current sink load, and the control loop is designed in order to maximize the robustness of the converter's closed-loop performance. The proposed method yields a control design that provides predictable and controllable closed-loop performance for the converter loaded with an actual load.

  • PDF

주파수 선택적 Rayleigh 페이딩 채널에서 cdma2000 순방향링크의 고속 폐루프 전력제어에 대한 성능 평가 (Performance Evaluation for Fast Closed-Loop Power Control of cdma2000 Forward Link in frequency-Selective Rayleigh Fading Channel)

  • 강법주;남윤석
    • 한국통신학회논문지
    • /
    • 제26권11B호
    • /
    • pp.1522-1533
    • /
    • 2001
  • 본 논문에서는 cdma2000 시스템에서 순방향 폐루프전력제어를 위해 수신 E$_{b}$/I$_{o}$ 를 추정하는 방법을 다루고 있다. 이동국 수신 b//I$_{o}$ 의 추정은 순방향 전력제어 부채널(forward power control subchannel) 전송 심벌을 이용하고 있다. 수신비트에너지와 잡음분산의 추정은 주파수 선택적 Rayleigh 페이딩 채널에서 해석되었다. 특히, 수신비트에너지의 추정은 SIR(signal-to-interference ratio)을 향상시키기 위해서 rake 핑거들과 1/Q 수신심벌들웨 대하여 코히런트 결합에 의해 수행되었다. 그리고 본 논문에서는 차량속도와 전력조정스텝크기에 따른 순방향 폐루프 전력제어의 성능을 비트오율과 전력제어에러 측면에서 평가하고 있다. 시뮬레이션 결과로는 차량속도에 따른 최적의 전력조정스텝크기를 제시하고 있다.

  • PDF

Modeling and a Simple Multiple Model Adaptive Control of PMSM Drive System

  • Kang, Taesu;Kim, Min-Seok;Lee, Sa Young;Kim, Young Chol
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.442-452
    • /
    • 2017
  • This paper deals with the input-output modeling of a vector controlled PMSM drive system and design of a simple multiple model adaptive control (MMAC) scheme with desired transient responses. We present a discrete-time modeling technique using closed-loop identification that can experimentally identify the equivalent models in the d-q coordinates. A bank of linear models for the equivalent plant of the current loop is first obtained by identifying them at several operating points of the current to account for nonlinearity. Based on these models, we suggest a simple q-axis MMAC combined with a fixed d-axis controller. After the current controller is designed, another equivalent model including the current controller in the speed control loop shall be similarly obtained, and then a fixed speed controller is synthesized. The proposed approach is demonstrated by experiments. The experimental set up consists of a surface mounted PMSM (5 KW, 220V, 8 poles) equipped with a flywheel load of 220kg and a digital controller using DSP (TMS320F28335).

State-of-charge Estimation for Lithium-ion Batteries Using a Multi-state Closed-loop Observer

  • Zhao, Yulan;Yun, Haitao;Liu, Shude;Jiao, Huirong;Wang, Chengzhen
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.1038-1046
    • /
    • 2014
  • Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.