• Title/Summary/Keyword: Power circuit design

Search Result 2,260, Processing Time 0.034 seconds

Novel Power Bus Design Method for High-Speed Digital Boards (고속 디지털 보드를 위한 새로운 전압 버스 설계 방법)

  • Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.23-32
    • /
    • 2006
  • Fast and accurate power bus design (FAPUD) method for multi-layers high-speed digital boards is devised for the power supply network design tool for accurate and precise high speed board. FAPUD is constructed, based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching can be carried out because the I/O switching effect on a power supply noise can be estimated over the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

Design and Implementation of Class-AB High Power Amplifier for IMT-2000 System using Optimized Defected Ground Structure (최적화된 DGS 회로를 이용한 IMT-2000용 Class-AB 대전력증폭기의 설계 및 구현)

  • 강병권;차용성;김선형;박준석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • In this paper, a new equivalent circuit for a defected ground structure(DGS) is proposed and adapted to design of a power amplifier for performance improvement. The DGS equivalent circuit presented in this paper consists of parallel LC resonator and parallel capacitance to describe the fringing fields due to the etched defects on the metallic ground plane, and also is used to optimize the matching circuit of a power amplifier. A previous research has also used a DGS for harmonic rejection and efficiency improvement of a power amplifier(1), however, there was no exact equivalent circuit analysis. In this paper, we suggest a novel design method and show the performance improvement of a class AB power amplifier by using the equivalent circuit of a DGS applied to output matching circuit. The design method presented in this paper can provide very accurate design results to satisfy the optimum load condition and the desirable harmonic rejection, simultaneously. As a design example, we have designed a 20W power amplifier with and without circuit simulation of DGS, and compared the measurement results.

  • PDF

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.

Design of Super-regenerative Oscillator for Ultra Low Power Receiver Implementation (극소전력 수신기 구현을 위한 Super-regenerative Oscillator 설계)

  • Kim, Jeong-Hoon;Kim, Jung-Jin;Kim, Eung-Ju;Park, Ta-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.625-626
    • /
    • 2006
  • An Ultra low power super-regenerative oscillator was implemented with on-chip inductor and quench signal generator. The super-regenerative oscillator detects the signal level as low as -70dBm while consuming only 0.48mA at 1.5V supply voltage. These results indicate that the super-regenerative oscillator can be outstanding candidate the simple, ultra low power receiver design.

  • PDF

Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET (SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계)

  • Lee, Sangyong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

Insulation Design Standards for Protection of Power System against Lightning in Korea Electric Power Corporation (낙뢰로부터 전력설비 보호를 위한 한전의 절연설계 기준)

  • Woo, J.W.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.555-560
    • /
    • 2006
  • As it has been reported that more than 60% of transmission line faults occurs due to lightning strokes, lighting is one of concerned issues in electric power utility company. Most of transmission line is double circuit in Korea. Double circuit outages account for 33.7 percent of total lightning faults from 1996 to 2004. Even though transmission fault might be cleared shortly by protective system, it could deteriorate the power quality accompanied with sag or flicker. Moreover, double circuit fault may lead to more aggravated situation, for instance, blackout. To Protect transmission lines from lightning stroke, reduction of tower footing resistance, multiple ground wires and unbalanced insulation in double circuit lines have been adopted. In this paper, we would like to introduce insulation design standards for lightning protection of Korea Electric Power Corporation.

A New Single-Stage Small Power MH lamp Electronic Ballast

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • In this study, we proposed a new single-stage small power MH lamp electronic ballast and power-factor correction circuit with improved circuit by the current of passive power factor correction. Main circuit integrates traditional DC/DC and DC/AC circuits into one-stage DC/AC inverter. Moreover, we described the working principle and control strategy of the new circuit; it's soft switching principle; and resonant element parameter design formula. An experimental prototype of HID lamp electronic ballast with output power of 70 W was built to verify the feasibility of the analysis and design. The simulation and experimental results proved that the power factor of this circuit could reach 94%, with efficiency of 90%. The input current harmonics conform to IEC 61000-3-2 standards and its cost is low. These superior performances of the new circuit indicate certain practical values.

Power Minimization Techniques for Logic Circuits Utilizing Circuit Symmetries (회로의 대칭성을 이용한 다단계 논리회로 회로에서의 전력 최소화 기법)

  • 정기석;김태환
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.504-511
    • /
    • 2003
  • The property of circuit symmetry has long been applied to the Problem of minimizing the area and timing of multi-level logic circuits. In this paper, we focus on another important design objective, power minimization, utilizing circuit symmetries. First, we analyze and establish the relationship between several types of circuit symmetry and their applicability to reducing power consumption of the circuit, proposing a set of re-synthesis techniques utilizing the symmetries. We derive an algorithm for detecting the symmetries (among the internal signals as well as the primary inputs) on a given circuit implementation. We then propose effective transformation algorithms to minimize power consumption using the symmetry information detected from the circuit. Unlike many other approaches, our transformation algorithm guarantees monotonic improvement in terms of switching activities, which is practically useful in that user can check the intermediate re-synthesized designs in terms of the degree of changes of power, area, timing, and the circuit structure. We have carried out experiments on MCNC benchmark circuits to demonstrate the effectiveness of our algorithm. On average we reduced the power consumption of circuits by 12% with relatively little increase of area and timing.

Design and characteristics of operating circuit for the LED Traffic Signal Lamp (LED 교통 신호등의 구동 회로 설계 및 특성)

  • No, Kyung-Ho;Lim, Byoung-No;Park, Jong-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.106-110
    • /
    • 2005
  • In this paper, LED traffic signal lamp's operating circuit using Flyback converter and PFC IC has been presented. Most power conversion circuits use PFC IC for Power Factor Correction. The design parameter's value of Flyback converter has been proposed and the error amplifier which regulates the output voltage has been designed Besides, the under voltage protection circuit and the over voltage protection circuit for protecting the operating circuit kin unbalance of common electric power source and the temperature compensation circuit for fixed optical output power have been proposed.

  • PDF

Design and Implementation of a Trigger Circuit for Xenon Flash Lamp Driver (제논 플래시 램프 구동장치를 위한 트리거 회로 설계 및 구현)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.138-139
    • /
    • 2017
  • This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.

  • PDF