• Title/Summary/Keyword: Power angle

Search Result 2,358, Processing Time 0.037 seconds

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

Power Change According to the Angle of Solar Incidence (태양 입사각에 따른 전력 변화)

  • Mi-Yong Hwang;NguYen Vanhung;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.261-265
    • /
    • 2023
  • In this paper, we analyzed the transformation of the power following by the angle of incidence of the solar, the angle of photovoltaic module and artificial solar changed from 30° to 90° and synchronously changed the distance from 0.1 m to 0.5 m. Setting the distance between the artificial solar and the luminometer from 0.1 m to 0.5 m and set the angles to 90°, 60°, 45°, and 30°, the angle was 90° and when the distance was 0.1 m, the maximum Illuminance was 19,580 lux, the light could be obtained more. If the angle of incidence between the Artificial solar and the photovoltaic module was 90° and the variable resistance was 1,000 Ω at a distance of 0.4 m, the maximum power reached 0.82 W. Provided that the angle of incidence between the artificial solar and the photovoltaic module was 90° and the distance was 0.2 m since the variable resistance had the maximum power of 500 Ω, the maximum power was 0.78 W. At 1,000 Ω, the maximum power is 0.80 W so the maximum power at the variable resistance 1,000 Ω could obtain higher power than the variable resistance 500 Ω. The variable resistance was 1,000 Ω and the angle of incidence between the Artificial solar and the photovoltaic module was 90° at a distance of 0.4 m, and the maximum power reached 0.82 W. The angle was 60° at 0.3 m and 0.4 m the maximum power reached 0.10 W. The angle was 45° at 0.2 m maximum power reached 0.020 W, the angle was 30° at 0.4 m, and the maximum power reached 0.004 W. In four results about maximum power depending on the angle of incidence between the artificial solar and the photovoltaic module, the luminous efficiency and maximum power can be got the best at an angle of 90°.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

A study on the MPPT tracking algorithm using angle control of flexible PV in BIPV (BIPV에서 Flexible PV의 각도 조절을 이용한 MPPT 추적 알고리즘 연구)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2017
  • In this paper presents the MPPT tracking algorithm using angle control of flexible PV in BIPV. The proposed algorithm is based on MPPT tracking algorithm for curtain wall using flexible PV. It is an algorithm to find optimal power generation condition by controlling the angle of flexible PV using the air layer of window. The angle of flexible PV tests the power generation by separating the center of flexible PV into the interior angle in the interior direction and the external angle in the center of flexible PV. When the angle of flexible PV was used as interior angle, the generation amount was increased by 15.79% and increased by 8.45% compared with the external angle. MPPT tracking is performed on the generation amount of the interior angle which has the most power after comparing the generation amount according to the bending shape of the flexible PV. This algorithm can be the most efficient method for the curtain wall using flexible PV because the bending pattern with the greatest amount of power generation may be different because the environment of the building applying the curtain wall is different.

A Study on Correlation between Power of Trunk Flexors, Extensors and Lumbar Lordotic Angle in Normal Adults (정상 성인에서 체간 굴근, 신근의 근력과 요추 전만각의 상관관계에 관한 연구)

  • Choi, Bo-Mi;Yi, Jeong-Min;Kim, Hyun-Soo
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.7 no.2
    • /
    • pp.39-52
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the correlation between lumbar lordotic angle and the power of trunk flexors, extensors in normal adults Methods : 34 normal participants participated in this study. Their lumbar lordotic angle(L1-S1 Cobb's angle and L1-L5 cobb's angle) was measured by x-ray taken on lateral direction, erect cross-arm position. And muscle power of trunk flexors and extensors of each participant measured using Cybex HUMAC NORM. Results : 1. The average of L1-S1 Cobb's angle was $47.21{\pm}8.88^{\circ}$ and the average of L1-L5 Cobb's angle was $36.32{\pm}9.62^{\circ}$(Table IV). 2. The average ratio of trunk flexors/extensors was $6.44{\pm}19.31%$(Table V). The average power of the trunk flexors was $165.18{\pm}55.05$(Newton-Meter/kg), and the power of trunk extensors was $257.18{\pm}85.53$ (Newton-Meter/kg)(Table VI). 3. Lumbar lordotic angle has no relation to the ratio of trunk flexors/extensors(Table VII, Fig. 4). 4. Lumbar lordotic angle has no relation to both the power of the trunk flexors and extensors(Table VIII, Fig. 5, Fig. 6). Conclusions : These results suggest that the lumbar lordotic angle measured by radiograph could not evaluate the power and ratio of trunk flexors, extensors.

  • PDF

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an Installation Angle (건물일체형 태양광발전시스템(BIPV)의 설치조건에 따른 발전특성 연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.386-389
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result, the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$, with respect to the inclined slope of the module. Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth.

  • PDF

The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait (파워워킹과 일반보행의 운동학적 및 EMG 비교분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Kim, Eun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Power Consumption and Viewing Angle Characteristics Dependent on Liquid Crystal's Twist Angle in Reflective Twisted Nematic Mode (반사형 TN mode의 Twist angle에 따른 소비전력과 시야각 특성)

  • 송제훈;정태봉;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.207-211
    • /
    • 2004
  • We have performed computer simulation to obtain a globa1 optimization of power consumption and viewing angle characteristic of reflective twisted nematic (R-TN) mode liquid crystal display (LCD) with sin81e polarizer and λ/4 plate. Our studies shout that with increasing the twist angle, a steepness of reflectance-voltage curve increase, operation voltages decreases, the region where contrast ratio (CR) greater than 10 increases but the reflectance of the white state starts to decrease at above the twist angle of 75$^{\circ}$. Above the twist angle of 90$^{\circ}$, the R-TN mode LCD shows the most favorable combination of low consumption and good viewing angle characteristic.

Estimation of Mutual Inductance Angle for 2-D Wireless Power Transfer System (2차원 무선전력전송 시스템의 상호 인덕턴스 각 추정)

  • Guo, Tianqi;Seol, Won-Kyu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.49-50
    • /
    • 2017
  • In a two-dimensional wireless power transfer system, the mutual inductance angle is the most important parameter for determining the power transmission efficiency. This paper presents a technique to estimate the mutual inductance angle from the voltage and current information of the transmitting (Tx) coils. The equation to estimate the mutual inductance angle is derived, and the validity of the proposed method is verified through simulation and experiment.

  • PDF

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.