• 제목/요약/키워드: Power and power loss

검색결과 4,820건 처리시간 0.031초

스위칭 방식에 따른 BLDC Motor 구동용 인버터의 전력 손실 계산 알고리즘 개발 (The Development of Calculation Algorithm of Power Loss for Inverter in BLDC Motor Drive with Switching Modes)

  • 김상훈;이영철
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.119-126
    • /
    • 2004
  • BLDC Motor is one of the widely utilizable motors in servo system. The accurate calculation of the power loss for the IGBT and Inverse diode with Bipolar and Unipolar switching modes the driving modes is important for the design of drives for their heat treatment. If it were not for temperature-sensors in devices, it is difficult to get direct power loss, so. Power losses may be modeled by computer modeling to obtain the Calculation of the Power loss for Inverter in BLDC Motor with switching modes which is presented in this paper. The computer modeling is carried out by Matlab simulation. The power loss consists of conduction losses Conduction losses are the source of occurrence due to The IGBT and Inverse diode currents. Switching losses are the source of occurrence due to switching on/off in the devices, and gives the dominant influence to the loss. As a result, the unipolar I mode is best in reducing the heat losses.

  • PDF

압전 지능 구조물을 이용한 통계적 에너지 해석 기법 (Application of Piezoelectric Smart Structures for Statistical Energy Analysis)

  • 김재환;김정하;김재도
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Feasible Power Loss Analysis and Estimation of Auxiliary Resonant DC Link Assisted Soft-Switching Inverter with New Zero Vector Generation Method

  • Manabu Kurokawa;Claudio Y. Inaba;M. Rukonuzzaman;Eiji Hiraki;Yoshihiro Konishi;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.77-87
    • /
    • 2002
  • The purpose of this paper is to improve power conversion efficiency of three-phase soft-switching voltage-source inverter with an auxiliary resonant dc link (ARDCL) snubber circuit. Firstly, the operation principle of ARDCL snubber circuit is described. Secondly, this paper proposes an effictive generation method of zero voltage vector for three-phase voltage-source soft-switching inverter in power losses in which power losses in the ARDCL snubber circuit can be reduced. In particular, zero voltage holding interval in the inverter DC busline can be controlled due to the new generation scheme of zero voltage vector. Thirdly, a simulator for power loss analysis for power loss characteristics based on actual system, is developed. the validity of developed. The validity of developed simulator of proved with experimental results. Finally, power efficency of three-phase inverter is estimated according to high carrier frequency by using the simulatior.

120kW급 IGBT 인버터의 열 응답 특성 실시간 모델 (A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter)

  • 임석연;차강일;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.

분산형전원이 도입된 배전계통의 손실산정기법에 관한 연구 (A Study on the Optimal Distribution toss Management Using toss factor in Power Distribution Systems)

  • 노대석
    • 한국산학기술학회논문지
    • /
    • 제6권3호
    • /
    • pp.231-240
    • /
    • 2005
  • 본 연구에서는 분산형전원이 연계된 배전계통에서 배전 손실을 설비별로 산정하는 알고리즘과 통계적인 방법에 의하여 배전손실 계수를 산정하는 알고리즘을 제시하여 배전 손실 관리의 정확도를 제고하는 방안을 마련하고자 한다. 먼저, 배전손실에 대한 개념을 정의하고 배전손실 산정시의 문제점에 대하여 분석하고, 배전손실 산정에서 가장 중요한 자료 추출 방법과 대상자료의 유효성 검증하는 방법을 제시한다. 그리고 통계적인 방법에 의한 부하특성계수를 산정하는 알고리즘을 제시하고, 배전손실 요소들간의 상호관계를 규명하며, 배전 설비별(고압배전선로, 배전용변압기, 저압배전선로) 손실계산 알고리즘을 개발한다.

  • PDF

Inductor Design Minimizing Power Loss for Boost Converter

  • Liang, Dong;Seo, Eun-Sung;Shin, Hwi-Beom
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.285-286
    • /
    • 2016
  • This paper proposes a method for designing the inductor to minimize power loss for boost converter. The proposed inductor design method uses genetic algorithm to find an optimal inductance and an optimal frequency which minimize the power loss at rated power. The validity of proposed inductor design method is verified by simulation and experiment.

  • PDF

무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용 (The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market)

  • 박종배;이기송;신중린;김성수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

22.9kV/50MVA급 고온초전도 전력케이블의 교류손실 (The AC loss of 22.9kV/50MVA High-Tc Superconducting Power Cable)

  • 최석진;이상진;심기덕;조전욱;이수길;양병모;윤형희
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.31-34
    • /
    • 2009
  • An HTS power cable is generally composed of 2 layers for conducting and 1 layer for shielding. For the analysis of AC loss of an HTS power cable, 2-dimensional magnetic field analysis is carried out. The magnetization loss in HTS cable core was calculated, and the transport current loss was obtained from the monoblock equation and the elliptical Norris Equation. And the total AC loss of the cable was expected by the sum of magnetization loss and transport current loss. The variation of ac loss with respect to the gap and uncertain factor between the superconducting tapes was investigated, and the ac loss of 22.9kV/50MVA high-Tc superconducting power cable was calculated. These results well agree with those of experiment.

Eddy Loss Analysis and Parameter Optimization of the WPT System in Seawater

  • Zhang, Ke-Han;Zhu, Zheng-Biao;Du, Luo-Na;Song, Bao-Wei
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.778-788
    • /
    • 2018
  • Magnetic resonance wireless power transfer (WPT) in the marine environment can be utilized in many applications. However, energy loss in seawater through eddy loss (EL) is another consideration other than WPT in air. Therefore, the effect of system parameters on electric field intensity (EFI) needs to be measured and ELs calculated to optimize such a system. In this paper, the usually complicated analytical expression of EFI is simplified to the product of frequency, current, coil turns, and a coefficient to analyze the eddy current loss (ECL). Moreover, as the calculation of ECL through volume integral is time-consuming, the equivalent eddy loss impedance (EELI) is proposed to help designers determine the optimum parameters quickly. Then, a power distribution model in seawater is conceived based on the introduction of EELI. An optimization flow chart is also proposed according to this power distribution model, from which a prototype system is developed which can deliver 100 W at 90% efficiency with a gap of 30 mm and a frequency of 107.1 kHz.

공작기계 스핀들용 유도전동기의 용량-속도에 따른 손실 및 발열특성 해석 (Power Loss and Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle according to the Rated Power-Speed)

  • 성기현;조한욱;황주호;심종엽
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1668-1677
    • /
    • 2013
  • This paper deals with the power loss and thermal characteristics of induction motor for machine tools according to the rated power and speed. To reduce the fabrication error by thermal strain in rotational machine tools, we calculated the power loss and thermal behavior of induction motors. Firstly, the inverse design of general induction motors for machine tool spindle has been performed. The inverse design results are compared with the torque-speed characteristic curve in motor's catalog. The power loss are calculated by finite element method(FEM) at rated condition. Secondary, the transient thermal characteristics of induction motors are calculated by equivalent thermal resistance model from Motor-CAD S/W. The inverse design, power loss and thermal behavior calculation for induction motors with various rated power and speed has been performed. Finally, to verify the design and calculation process of induction motor, we implemented the experimental set with 0.4kW 1710rpm class industrial induction motor model. The obtained thermal characteristics of experimental model confirmed that the design and power loss calculation processes are appropriate to the prediction of thermal strain in rotational machine tools.