• Title/Summary/Keyword: Power allocation scheme

Search Result 325, Processing Time 0.03 seconds

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

Cross-Layer Resource Allocation Scheme for WLANs with Multipacket Reception

  • Xu, Lei;Xu, Dazhuan;Zhang, Xiaofei;Xu, Shufang
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.184-193
    • /
    • 2011
  • Tailored for wireless local area networks, the present paper proposes a cross-layer resource allocation scheme for multiple-input multiple-output orthogonal frequency-division multiplexing systems. Our cross-layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets' lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets' lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks

  • Zhao, Yan;Shi, Wenxiao;Shi, Hanyang;Liu, Wei;Wu, Pengxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.325-335
    • /
    • 2017
  • Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.

Game Theoretic based Distributed Dynamic Power Allocation in Irregular Geometry Multicellular Network

  • Safdar, Hashim;Ullah, Rahat;Khalid, Zubair
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.199-205
    • /
    • 2022
  • The extensive growth in data rate demand by the smart gadgets and mobile broadband application services in wireless cellular networks. To achieve higher data rate demand which leads to aggressive frequency reuse to improve network capacity at the price of Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been recognized as an effective scheme to get a higher data rate and mitigate ICI for perfect geometry network scenarios. In, an irregular geometric multicellular network, ICI mitigation is a challenging issue. The purpose of this paper is to develop distributed dynamic power allocation scheme for FFR based on game theory to mitigate ICI. In the proposed scheme, each cell region in an irregular multicellular scenario adopts a self-less behavior instead of selfish behavior to improve the overall utility function. This proposed scheme improves the overall data rate and mitigates ICI.

Approximate Minimum BER Power Allocation of MIMO Spatial Multiplexing Relay Systems (다중 안테나 공간 다중화 릴레이 시스템을 위한 근사 최소 비트 오율 전력 할당 방법)

  • Hwang, Kyu-Ho;Choi, Soo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.337-344
    • /
    • 2011
  • In this paper, a multiple-input and multiple-output (MIMO) spatial multiplexing (SM) relay system is studied in a bit error rate (BER) sense, where every node is deployed with multiple antennas. In order to efficiently use the limited power resource, it is essential to optimally allocate the power to nodes and antennas. In this context, the power allocation (PA) algorithm based on minimum BER (MBER) for a MIMO SM relay system is proposed, which is derived by direct minimization of the average BER, and divided into inter-node and inter-antenna PA algorithm. The proposed scheme outperforms the conventional equal power allocation (EPA) algorithm without extra power consumption.

Spectrum Allocation and Service Control for Energy Saving Based on Large-Scale User Behavior Constraints in Heterogeneous Networks

  • Yang, Kun;Zhang, Xing;Wang, Shuo;Wang, Lin;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3529-3550
    • /
    • 2016
  • In heterogeneous networks (HetNets), energy saving is vital for a sustainable network development. Many techniques, such as spectrum allocation, network planning, etc., are used to improve the network energy efficiency (EE). In this paper, micro BSs utilizing cell range expansion (CRE) and spectrum allocation are considered in multi-channel heterogeneous networks to improve EE. Hotspot region is assumed to be covered by micro BSs which can ensure that the hotspot capacity is greater than the average demand of hotspot users. The expressions of network energy efficiency are derived under shared, orthogonal and hybrid subchannel allocation schemes, respectively. Particle swarm optimization (PSO) algorithm is used to solve the optimal ratio of subchannel allocation in orthogonal and hybrid schemes. Based on the results of the optimal analysis, we propose three service control strategies on the basis of large-scale user behaviors, i.e., adjust micro cell rang expansion (AmCRE), adjust micro BSs density (AmBD) and adjust micro BSs transmit power (AmBTP). Both theoretical and simulation results show that using shared subchannel allocation scheme in AmBD strategies can obtain maximal EE with a very small area ratio. Using orthogonal subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is larger. Using hybrid subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is large enough. No matter which service control strategy is used, orthogonal spectrum scheme can obtain the maximal hotspot user rates.

Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.306-317
    • /
    • 2021
  • The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.

Power Allocation and Capacity Analysis of OFDM-based Unlicensed User in TV White Space (TV 화이트 스페이스에서 OFDM 기반 비인가 사용자의 파워 할당 기법 및 용량 분석)

  • Lim, Sung-Mook;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, we propose a power allocation scheme of the unlicensed user based on orthogonal frequency division multiplexing (OFDM) in the TV white space (TVWS). Power constraints in TVWS should be satisfied in the time domain. However, because OFDM has high PAPR (peak-to-average power ratio), it is difficult to satisfy power constraints of TVWS in the time domain. Furthermore, the conventional power allocation schemes cannot be generally applied to unlicensed user in TVWS. Therefore, we propose a power allocation scheme to satisfy power constraints of TVWS by reducing PAPR in the time domain. In addition, we analyze the capacity of the unlicensed user based on OFDM in a closed form. Based on the capacity analysis, as the number of subcarriers decreases, the capacity can be enhanced. In simulation results, we show that the capacity of the unlicensed user increases, as the number of subcarriers decreases and the mean of the channel between the transmitter and the receiver of the unlicensed user increases.

Energy Efficient Resource Allocation with Energy Harvesting in Cognitive Radio Networks (인지 라디오 네트워크에서 에너지 하베스팅을 고려한 에너지 효율적 자원 할당 방안)

  • Lee, Kisong;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1255-1261
    • /
    • 2016
  • Recently, the energy harvesting technology in which energy is collected from the wireless signal which is transmitted by mobile communication devices, has been considered as a novel way to improve the life time of wireless sensors by mitigating the lack of power supply problem. In this paper, we consider the optimal sensing time and power allocation problem for cognitive radio systems, where the energy efficiency of secondary user is maximized while the constraint are satisfied, using the optimization technique. Based on the derived optimal solutions, we also have proposed an iterative resource allocation algorithm in which the optimal power and sensing time allocation can be found without excessive computations. The simulation results confirm that the proposed scheme achieves the optimal performance and it outperforms the conventional resource allocation schemes in terms of energy efficiency while the constraints are guaranteed to be satisfied.

Resource Allocation Scheme for D2D Communications in Multi-Cell Environments (다중 셀 환경에서 단말 간 직접 통신을 위한 자원 할당 방식)

  • Oh, Sung-Min;Lee, Changhee;Yun, Miyoung;Shin, Jaesheung;Park, Ae-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.601-609
    • /
    • 2014
  • This paper proposes a resource allocation scheme suitable for D2D communications in multi-cell environment. In order to solve the inter-cell interference, the proposed scheme allocates the pre-assigned resource group and shares the information with neighbor cells. This paper also proposes a power control scheme for D2D communication to enhance the cell throughput. By the simulation results, the average SINR of the cellular uplink and D2D communication link are mostly higher than 10 dB when the proposed scheme is applied. On the other hand, with the inter-cell non-coordinated resource allocation scheme, the average SINR of the D2D communication link are decreased by 0 dB. In addition, the proposed scheme can enhance the cell throughput up to 8 % compared with the inter-cell non-coordinated resource allocation scheme.