• Title/Summary/Keyword: Power Uprating

Search Result 6, Processing Time 0.025 seconds

Study on Optimization of Throttle Margin in High Pressure Turbine of Nuclear Power Plant (원자력 발전소 고압터빈의 교축여유(Throttle Margin) 최적화 연구)

  • Ko, W.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2010
  • In the present study, optimization of throttle margin for high pressure turbine to be retrofitted or partially modified for power uprating or life extension in nuclear power plant, has been performed to increase the electrical output. Throttle margin for high pressure turbine is required to maintain all the time the rated power by opening more of governor valves whenever inlet pressure is decreased due to the tube plugging of steam generator. If throttle margin of high pressure turbine is too much compared to remaining lifetime, loss of electrical output due to pressure drop of governor valves is inevitable. On the contrary, if it is too little, the rated power operation can not be accomplished when inlet pressure of high pressure turbine is dropped after many years operation. So, throttle margin for high pressure turbine in nuclear power plant is compromised considering for the degradation of steam generator, governor valve capacity, manufacturing tolerance of high pressure turbine, future plan of power uprating, and remaining lifetime of power plant.

SOME POWER UPRATE ISSUES IN NUCLEAR POWER PLANTS

  • Tipping, Philip
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.251-254
    • /
    • 2008
  • Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.

Mechanical Performance Evaluation of a Top End Piece for Dual Cooled Fuels (이중냉각 핵연료 상단고정체의 기계적 성능평가)

  • Kim, Jae-Yong;Yoon, Kyung-Ho;Kim, Hyung-Kyu;Choi, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.417-424
    • /
    • 2011
  • A fuel assembly consists of five major components, i.e., a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT); in addition, it also includes fuel rods (FRs). The TEP/BEP should satisfy stress intensity limits according to the conditions A and B of ASME, Section III, Division 1-Subsection NB. In a dual-cooled fuel assembly, the array and position of fuel rods are different from those in a conventional PWR fuel assembly; these changes are necessary for achieving power uprating. The flow plates of the TEP and BEP have to be modified accordingly. The pattern and shape of the flow holes were newly designed. To verify the strength compatibility, the Tresca stress limit according to the ASME code was investigated in the case of an axial load of 22.241 kN. In this paper, the stress linearization procedure for strength evaluation of a newly designed TEP is presented.