• Title/Summary/Keyword: Power Transmission line

Search Result 1,396, Processing Time 0.031 seconds

The circuit design to be power transmission or power distribution using the dual characteristic impedance transmission line (이중 특성 임피던스 전송 선로를 이용한 전력 전송 또는 전력 분배가 가능한 회로 설계)

  • Park, Unghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2339-2344
    • /
    • 2014
  • of a microstrip transmission line, this transmission line can operate as the microstrip line or the coplanar line according to open or short connection between the ungrounded copper plane and grounded plane on the base plane. Two different type operation of the transmission line means that one transmission line can have two different characteristic impedances. This paper proposes and fabricates the circuit to be operated 2-ports power transmission line or 2-way power divider with the stable input matching characteristic by using this dual-impedance transmission line. The proposed circuit operates 2-ports power transmission line in case of the coplanar line or 2-way power divider line in case of the microstrip line. The fabricated circuit shows $S_{21}$ > -0.2 dB and $S_{11}$ < -15 dB above 700 MHz when the circuit operates 2-ports power transmission line. And, it is $S_{21}$ > -3.8 dB, $S_{11}$ < -10 dB and $S_{21}/S_{31}$ < ${\pm}0.3dB$ above 700 MHz when the circuit operates 2-way power divider.

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

Design and Analysis of 8-Port Power Divider for Using RLH-TL(Right/Left-Handed Transmission Line) (RLH-TL (Right/left-handed transmission line)을 이용한 8 port 전력 분배기 설계 및 분석)

  • Kim, Hyung-Mi;Lee, Bom-Son
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.29-32
    • /
    • 2005
  • In this paper, we present the 8 port in-phase power divider using right/left-handed transmission line. The proposed power divider splits the input power into 8 port regardless of the electrical length of transmission lines. Its size is much smaller than the conventional one. As the length of the transmission line in the power divider decreases, its bandwidth becomes wider.

  • PDF

Analysis of Different 500kV HVAC Transmission Lines Lightning Shielding

  • Nayel, Mohamed
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.49-57
    • /
    • 2013
  • The lightning shielding of different 500 kV HVAC-TL high voltage AC transmission lines was analyzed. The studied transmission lines were horizontal flat single circuit and double circuit transmission lines. The lightning attractive areas were drawn around power conductors and shielding wires. To draw the attractive areas of the high voltage transmission lines, transmission line power conductors, shielding wires and lightning leader were modeled. Different parameters were considered such as lightningslope, ground slope and wind on lightning attractive areas. From the calculated results, the power conductors voltages affected on attractive areas around power conductors and shielding wires. For negative lightning leader, the attractive area around the transmission line power conductor increased around power conductors stressed by positives voltage and decreased around power conductors stressed by negative voltage. In spite of this, the attractivearea of the transmission line shielding wire increasedaround the shielding wire above the power conductor stressed by the positive voltage and decreased around the shielding wire above the power conductor stressed by negative voltage. The attractive areas around power conductors and shielding wires were affected by the surrounding conditions, such as lightning leader slope, ground slope. The AC voltage of the transmission lines made the shielding areas changing with time.

Signal Transmission Scheme for Power Line Communications for Internet of Energy (에너지 인터넷을 위한 전력선 통신의 신호전송 기법)

  • Hwang, Yu Min;Sun, Young Ghyu;Kim, Soo Hwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2017
  • This paper proposes a transmission algorithm that optimizes transmission power and sub-channel allocation to maximize energy efficiency considering characteristics of the channel impedance of power lines in power line communication systems. Since the received power at the receiver is influenced by the characteristics of the power line channel, it is necessary to consider channel characteristics when developing a transmission strategy in a power line communication systems. In addition, the energy efficiency should be optimized while meeting the practical constraints, such as the maximum transmission power limit of the transmitter and minimum quality of service for each user. In the computer simulation, we confirm that the energy efficiency of the proposed algorithm is improved compared to baseline schemes.

A Study on Power System Decomposition Technique for Digital Simulation of Large Power System (대규모 계통의 디지털 시뮬레이션을 위한 계통분할 기법이 관한 연구)

  • Lee, Chul-Kyun;Lee, Jin;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.171-173
    • /
    • 2002
  • This paper presents a power system decomposition technique for digital simulation of large power system. To decompose power system, distributed transmission line model is used. But this model can be used only for long transmission lines. In this paper, capacitor compensation method is proposed to use distributed transmission line model for short transmission line. And case study shows proposed method can be used for effective power system decompositon in digital simulation of large power system.

  • PDF

A New Reduced-Sized Lumped Distributed Power Divider Using The Shorted Coupled-line Pair (끝이 단락된 결합선로를 이용한 전력 분배기의 초소형화)

  • Kang, In-Ho;Choi, Jae-Kyo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.283-287
    • /
    • 2003
  • A new method to miniaturize ${\lambda}/4$ transmission line of power divider is proposed. The method utilizes simple combination of the shorted coupled-line pair instead of the transmission line with very high impedance and shunt lumped capacitors. The length of ${\lambda}/4$ transmission line of power divider is about 16% over the conventional power divider at 1 GHz.

  • PDF

Unbalanced Power System Analysis in 765/345kV Parallel Transmission Line by Using EMTDC (EMTDC를 이용한 765/345kV 병가선로의 불평형 계통 해석)

  • Kim, Jong-Yul;Yoon, Jae-Young;Choi, Heung-Kwan;Lee, Woon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.199-201
    • /
    • 2003
  • Because of Korean power system characteristics and increasing power demand, the need of 765kV transmission line is growing gradually. Now a days, KEPCO's 765kV transmission line has been tested and stands for commercial operation. During the first stage, 765kV transmission line will be operated with two voltage grades of 765kV and 345kV, which results the unbalance of power system. So unbalanced current such as zero sequence current flows in the transmission line. In this paper, we describes the simulation study of 765/345kV parallel transmission line by using EMTDC program.

  • PDF

A Study on the Modeling of a Position Control System with a Pneumatic Cylinder Considering Transfer Characteristics of a Transmission Line (전달 관로의 전달특성을 고려한 공기압 실린더 구동장치의 모델링에 관한 연구)

  • Kang B.S.;Jang J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.20-25
    • /
    • 2004
  • In this study, a position control characteristics of pneumatic cylinder with transmission line is analyzed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing stiles of the fluid the diameter and the length of the line. But, the effect of the change of dynamic characteristics of transmission line by the flowing states on the position control characteristics can be neglected because of the friction force of the pneumatic cylinder. So, We assume that the position control characteristics is affected by the diameter and length of the transmission line. The experimental results according to the change of parameter of the transmission line show that the relation between the parameter of the transmission line and the position control characteristics of pneumatic cylinder driving system with the transmission line.

  • PDF

A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point (확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법)

  • Yoo, Ju Han;Kim, Dong Hwan;Lee, Seok;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.