• Title/Summary/Keyword: Power Transmission Systems

Search Result 1,404, Processing Time 0.03 seconds

Optimal Placement Design of Phase-Shifting Transformers for Power System Congestion Problems (계통 혼잡처리를 위한 Phase-Shifting Transformers의 최적 위치 선정)

  • Kim Kyu-Ho;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.567-572
    • /
    • 2005
  • This paper presents a scheme to design optimal placement of phase-shifting transformers for power system congestion problems. A good design of phase-shifting transformers placement can improve total transfer capability in interconnected systems. In order to find the optimal placement of phase-shifting transformers, the power flows of the interesting transmission lines are evaluated using sequential quadratic programming technique. This algorithm considers power balance equations and security constraints such as voltage magnitudes and transmission line capacities. The proposed scheme is tested in 10 machines 39 buses and IEEE 57 buses systems. Test result shows that the proposed method can find the optimal placement of phase-shifting transformers to solver power system congestion problems.

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

Effects of Rotational Stiffness of Isolators on Vibration Power Transmission in Vibration Isolation Systems over High Frequency Range (진동 절연계에서 절연요소 회전강성계수가 고주파수 대역 진동파워 전달에 미치는 영향)

  • 김진성;이호정;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.375-383
    • /
    • 2003
  • For a performance analysis of vibration isolation systems, the concept of vibration power flow can be employed preferably when noise radiated from the supporting structure with finite impedances is of interest. The idea is basically simple to understand and formulas for precise estimation of the vibration power are easy to derive. However, It is often required to simplify the process of experimentation under several assumptions due to instrumental limitations. For an example, rotational degree of freedom has not been well treated in bending vibrations of beam or plate-like structures. Yet, several recent studies showed that the moments and rotations play an important role in power transmission and should be taken into consideration carefully as the frequency range of interest goes to audibly high. Therefore, it is readily agreed that reduction of the noise radiation over the high frequency range can be effectively accomplished by adjusting the rotational stiffness of the isolator without changing the vibration isolator efficiency in low frequency range relevant to the translational stiffness of the isolator In this paper, the vibration power flow approach is applied to an AC motor installed on a finite plate in order to illustrate the contribution of the rotational vibration power to the total vibration power transmission. The effects of rotational stiffness of the isolator on the vibration power transmission are investigated by inserting various shapes of Isolators with different rotational stiffness but with $ame translational stiffness between the motor and the plate. The resultant noise radiation from the plate is presented to verify the proposed approach.

An Adaptive Transmission Scheme Based on Interference Temperature Cognition for Cognitive Radio Systems (Cognitive Radio 시스템을 위한 간섭온도 인지 기반의 적응전송 기법)

  • Hong, Min-Ki;Kim, Jae-Woon;Kim, Hyun-Wook;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.826-833
    • /
    • 2007
  • In this paper, we present an adaptive transmission system model to establish the baseline for wireless adaptive transmission using CR (Cognitive Radio) systems, and propose an adaptive transmission scheme based on IT (Interference Temperature) cognition for CR systems in the presented system environment. The proposed CR adaptive transmission scheme is the method that provides the CR user with the maximum transmit power in the range of not causing any interference to the incumbent user and guaranteeing the optimal throughput by applying CR-AMC (CR-Adaptive Modulation and Coding) in the given channel state. Simulation results show that in case of using the proposed CR adaptive transmission scheme, there is little degradation of BER performance, while causing no interference to the incumbent user. At the same time, the proposed scheme guarantees the optimal throughput to the CR user in the given channel state.

A Study on the Power System Application of High-Tc Superconducting Fault Current Limiter (고온초전도 한류기의 전력계통 적용에 관한 연구)

  • Bae, Hyeong-Thaek;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.115-116
    • /
    • 2006
  • Since the discovery of the high-temperature superconductors, many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means to limit fault current in power systems. The SFCLS, in contrast to current limiting reactors or high impedance transformers, are capable of limiting short circuit currents without adding considerable voltage drop and energy loss to power systems during normal operation. Under fault conditions, a resistance is automatically inserted into the power grid to limit the peak short-circuit current by transition from the superconducting state to the normal state, the quench. The advantages, like fail safe operation and quick recovery, make SFCL very attractive, especially for rapidly growing power systems with higher short-circuit capacities. In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current and voltage stability assessment in a sample distribution system and a transmission system are performed by the PSCAD/EMTDC based simulation method. Through the simulation, the advantage of SFCL application is shown, and the effective parameters of the SFCL are also recommended for both distribution and transmission systems. A resistive type component of SFCL is adopted in the analysis. The simulation results demonstrate not only the effectiveness of the proposed simulation scheme but also SFCL parameter assessment technique.

  • PDF

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

Optimal Cooperation and Transmission in Cooperative Spectrum Sensing for Cognitive Radio

  • Zhang, Xian;Wu, Qihui;Li, Xiaoqiang;Yun, Zi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.184-201
    • /
    • 2013
  • In this paper, we study the problem of designing the power and number of cooperative node (CN) in the cooperation phase to maximize the average throughput for secondary user (SU), under the constraint of the total cooperation and transmission power. We first investigate the scheme of cooperative spectrum sensing without a separated control channel. Then, we prove that there indeed exist an optimal CN power when the number of CNs is fixed and an optimal CN number when CN power is fixed. The case without the constraints of the power and number of CN is also studied. Finally, numerical results demonstrate the characteristics and existences of optimal CN power and number. Meanwhile, Monte Carlo simulation results match to the theoretical results well.

An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission (파워시프트 변속기 유압클러치시스템의 해석적 연구)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

On Setting Method of the operating Parameters of SFCL in Transmission Systems Considering Power Protection Relay (계통보호릴레이와의 협조를 고려한 SFCL의 동작파라메타 설정방법에 대한고찰)

  • Hong, Won-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1231-1234
    • /
    • 1998
  • Design & Operation of power system for meeting increase of electric power demand is becoming more difficult and complex. One of reasons is increase of fault current. As one of the most effective methods for suppressing the fault current, installation of SFCL is expected. This paper describes a method of fault analyses of power system with SFCLs, and also discusses determination of specification of SFCLs, effects of limiting the fault current due to SFCLs by use of the model system of two - bus electric power system with parallel circuit model transmission line. Also, describes the definition of six specific parameters of SFCL for power system application & a proposal of design method of specific parameter of a resistance type SFCL in overhead transmission lines considering operation of protective relays.

  • PDF

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.